熊凤超

副教授,智能科学与技术系, 计算机科学与工程学院, 南京理工大学

fcxiong@njust.edu.cn | Google Scholar | Github | 博客 | Linkedin|English Version

CV: [English] [中文简历]

[个人简介] [研究方向] [教育背景] [发表论文] [项目] [奖项荣誉]

Call for papers--> IET Computer Vision (IET CV) Special Issue "Spectral Imaging Powered Computer Vision" [CFP]. Deadline is 31 December 2022.

Call for participation-->The Second Hyperspectral Object Tracking Challenge. [CFP]. Deadline is 30th June 2022.

Call for papers--> Remote Sensing (中科院二区) Special Issue "Hyperspectral Object Tracking" [CFP]. Deadline is 31 January 2023.

个人简介

熊凤超博士于2019年10月加入南京理工大学,现为副教授。他于2014年6月在山东大学软件学院获得本科学士学位;2019年9月在浙江大学计算机科学与技术学院获得计算机科学博士学位;2011年9月至2012年7月在武汉大学国际软件学院交流;2017年11月-2018年12月在格里菲斯大学进行学术交流;2021年12月-2023年12月在澳门大学智慧城市物联网国家重点实验室澳门青年学者博士后研究。他的研究方向包括计算机视觉和遥感影像分析。研究获得DICTA 2020最佳学生论文以及DICTA 2021基于深度学习的遥感对地观测最佳论文。

组内计算资源充足,长期招聘优秀学生加入课题组进行科研训练、本科毕业设计以及读研。如果您对我的研究内容感兴趣,请邮件联系。

拟招2023年秋季入学硕士研究生1-2名,欢迎有保研资格的计算机、软件、电子、控制、物理、数学等相关专业学生通过邮件或电话联系。

研究内容

工作经历

教育背景

发表论文

  1. Nonlocal Spatial-Spectral Neural Network for Hyperspectral Image Denoising
    Guanyiman Fu, Fengchao Xiong, Jianfeng Lu, Jun Zhou, Yuntao Qian
    IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2022.
  2. SMDS-Net: Model Guided Spectral-Spatial Network for Hyperspectral Image Denoising
    Fengchao Xiong, Jun Zhou, Shuyin Tao, Jianfeng Lu, Jiantao Zhou, Yuntao Qian
    IEEE Transactions on Image Processing (TIP), 2022. [PDF][code]
  3. Material-Guided Siamese Fusion Network for Hyperspectral Object Tracking
    Zhuanfeng Li, Fengchao Xiong, Jianfeng Lu, Jun Zhou, Yuntao Qian
    International Conference on Acoustics, Speech, and Signal Processing (ICASSP , CCF B), 2022.
  4. Multitask Sparse Neural Network for Hyperspectral Image Denoising
    Fengchao Xiong, Jun Zhou, Minchao Ye,Jianfeng Lu,Yuntao Qian
    International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2022.
  5. Learning a deep structural subspace across hyperspectral scenes with cross-domain VAE
    Minchao Ye, Junbin Chen, Fengchao Xiong, Yuntao Qian,
    IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2022. [PDF]
  6. MAC-Net: Model Aided Nonlocal Neural Network for Hyperspectral Image Denoising
    Fengchao Xiong, Jun Zhou, Qinling Zhao, Jianfeng Lu, Yuntao Qian,
    IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021. [PDF] [code]
  7. SNMF-Net: Learning a Deep Alternating Neural Network for Hyperspectral Unmixing
    Fengchao Xiong, Jun Zhou, Shuyin Tao, Jianfeng Lu, Yuntao Qian,
    IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021. [PDF] [code]
  8. NMF-SAE: An interpretable sparse autoencoder for hyperspectral unmixing
    Fengchao Xiong, Jun Zhou, Minchao Ye, Jianfeng Lu, Yuntao Qian,
    IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021. [PDF](There are some errors in the final version.)
  9. Cross-scene hyperspectral feature selection via hybrid whale optimization algorithm with simulated annealing
    Jianxi Wang, Minchao Ye, Fengchao Xiong,Yuntao Qian
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 2021. [PDF]
  10. F3-Net: Feature Fusion and Filtration Network for Object Detection in Optical Remote Sensing Images
    Xinhai Ye, Fengchao Xiong*, Jianfeng Lu, Jun Zhou, Yuntao Qian
    Remote Sensing, 2020. [PDF] Code]
  11. Non-convex Non-separable Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing.
    Fengchao Xiong, Jun Zhou, Jianfeng Lu, Yuntao Qian.
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 2020. [PDF]
  12. M2-Net: A Multi-scale Multi-level Feature Enhanced Network for Object Detection in Optical Remote Sensing Images.
    Xinhai Ye,Fengchao Xiong,Haifeng Zhao, Jun Zhou, Jianfeng Lu.
    International Conference on Digital Image Computing: Techniques and Applications(DICTA),Melbourne, 2020. [PDF](Best Student Paper)
  13. BAE-Net: a band attention aware ensemble network for hyperspectral object tracking.
    Zhuanfeng Li,Fengchao Xiong, Jun Zhou, Jing Wang, Jianfeng Lu, Yuntao Qian.
    IEEE International On Image Processing(ICIP),United Arab Emirates, 2020.[PDF]
  14. Spectral Mixture Model Inspired Network Architectures for Hyperspectral Unmixing.
    Yuntao Qian, Fengchao Xiong, Qipeng Qian, Jun Zhou.
    IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2020. [PDF]
  15. Material based object tracking in hyperspectral videos
    Fengchao Xiong, Jun Zhou, Yuntao Qian.
    IEEE Transactions on Image Processing(TIP) vol. 29, no. 1, pp. 3719-3733, 2020.[PDF][code]
  16. Hyperspectral restoration via L0 Gradient Regularized Low-Rank Tensor factorization.
    Fengchao Xiong, Jun Zhou, Yuntao Qian.
    IEEE Transactions on Geoscience and Remote Sensing (TGRS),vol. 57, no. 12, pp. 10410-10425, Dec. 2019. [PDF] [Code]
  17. Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization.
    Fengchao Xiong, Yuntao Qian, Jun Zhou.
    IEEE Transactions on Geoscience and Remote Sensing (TGRS),vol. 57, no. 4, pp. 2341-2357, April 2019 [PDF] [Code]
  18. Object Tracking in Hyperspectral Videos with Convolutional Features and Kernelized Correlation Filter.
    Kun Qian, Jun Zhou,Fengchao Xiong,Huixin Zhou,Juan Du.
    International Conference on Smart Multimedia (ICSM), Toulon, 2018, pp. 308-319 [PDF, code]
  19. Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery.
    Yuntao Qian, Fengchao Xiong, Shan Zeng, Jun Zhou, and Yuan Yan Tang
    IEEE Transactions on Geoscience and Remote Sensing (TGRS), , vol. 55, no. 3, pp. 1776-1792, March 2017. [PDF][Code].

奖项荣誉

学术服务

审稿人 志愿者 其它

科研项目

学生

博士生 硕士生 毕业学生