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Abstract—Hyperspectral unmixing is recognized as an impor-
tant tool to learn the constituent materials and corresponding
distribution in a scene. The physical spectral mixture model is
always important to tackle this problem because of its highly ill-
posed nature. In this paper, we introduce a linear spectral mixture
model (LMM) based end-to-end deep neural network named
as SNMF-Net for hyperspectral unmixing. SNMF-Net shares
an alternating architecture and benefits from both model-based
methods and learning-based methods. On one hand, SNMF-Net
is of high physical interpretability as it is built by unrolling
Lp sparsity constrained nonnegative matrix factorization (Lp-
NMF) model belonging to LMM families. On the other hand, all
the parameters and submodules of SNMF-Net can be seamlessly
linked with alternating optimization algorithm of Lp-NMF and
unmixing problem. This enables to reasonably integrate the
prior knowledge on unmixing, optimization algorithm, and sparse
representation theory into the network for robust learning so as
to improve unmixing. Experimental results on the synthetic and
real-world data show the advantages of the proposed SNMF-Net
over many state-of-the-art methods.

Index Terms—Hyperspectral unmixing, nonnegative matrix
factorization (NMF), model-based neural network, sparse rep-
resentation.

I. INTRODUCTION

Hyperspectral image (HSI) not only captures the spatial

information but also the spectral information indexed by nu-

merous contiguous narrow bands of the object. These wealthy

spectral bands offer fine details on the material information

of the scene and dramatically augment HSIs discriminative

ability. Benefiting from this, HSIs have enabled many practical

applications such as object recognition [1], object tracking [2]

and medical analysis [3], [4], just to name a few. However,

HSIs suffer from low spatial resolution caused by the limita-

tion of hyperspectral sensors, leading to many ”mixed pixels”

containing more than one material. Hyperspectral unmixing

aims to decompose every pixel into the combination of con-

stituent materials, i.e., endmembers and their fractional abun-
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dances. It provides an attractive way to tackle this problem

and greatly improves the utility of HSIs.

The unmixing problem can be generally considered as

an ill-posed inverse problem recovering endmembers and

abundances from acquired HSIs. Prior knowledge is very

important to address this problem. Traditional model-based

methods make elaborate hypotheses on the physical interaction

between light and the target surface, i.e., the spectral mixture

model, and therefore are highly interpretable. As a simplified

model, the linear spectral mixture model (LMM) assumes the

observed light interacts with only one material and linearly

represents a pixel with endmembers [5]. Depended on LMM,

the unmixing can be sequentially decomposed in two stages,

i.e., endmember extraction such as vertex component analysis

(VCA) [6] and abundance estimation using regression, e.g.,

fully constrained least squares (FCLS) [7]. Alternatively, this

problem can be regarded as a blind source separation problem

that simultaneously infers the endmembers and abundances.

Formulating unmixing as a matrix factorization problem, non-

negative matrix factorization (NMF) decomposes an HSI into

the product of two factor matrices to perform unmixing [8]–

[10]. Thanks to the inherent advantages of learning parts-based

representation of the data, the two matrices are respectively

reasonably interpreted as endmembers and abundances in

LMM. The nonconvex objective function of NMF makes

its solution space very huge. Many extended NMFs embed

several kinds of regularization terms encoding certain prior

knowledge such as sparsity, spatial information, and spatial-

spectral information into the NMF model to limit the number

of trivial solutions [11]–[17]. Instead of a two-dimensional

matrix, nonnegative tensor factorization (NTF) directly treats

an HSI as a third-order tensor for unmixing [18], [19]. Albeit

interpretability, the model-based methods entail an accurate

model depicting the unmixing problem which is actually

difficult to obtain. Additionally, burdensome hyperparameter

setting and computationally demanding iterations also restrict

their effectiveness and efficiency.

Instead of model-based unmixing, a vast majority of

learning-based particularly deep neural networks (DNNs)

based methods directly learn the hidden concepts by feeding

a large number of training samples [20], [21]. In this way,

learning-based methods are very fast. Blind unmixing can

be cast as an unsupervised learning problem that jointly

learns endmembers and abundances from data. Autoencoders

(AEs) are mostly studied among these methods. AE comprises

an encoder component mapping the input data into hidden

concepts, i.e., abundances, and a decoder component recon-
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structing the input data by the learnable base, i.e., endmem-

bers. Specifically, Su et al. employed variational autoencoder

(VAE) to perform unmixing and stacked denoising AEs to

generate favorable initialization for subsequent VAE [22].

Instead of Euclidian distance, EndNet used spectral angle

distances in the loss function to more consider the nonlinearity

of endmembers [23]. Min et. al [24] further introduced the

Wasserstein distance as a regularization term to better con-

sider the distribution similarity between the observation and

the reconstruction. Under the observation that the abundance

maps of different endmembers are nearly orthogonal, Dou et

al. embedded orthogonal sparse prior into the AE to better

consider the relationship among abundance maps [25]. Qu

et al. introduced an untied denoising AE (uDAS) which

decouples the decoder from the encoder weights for more

accurate endmember extraction [26]. Moreover, cube-based

convolutional AEs exploit the spatial information along with

information of HSIs for spectral-spatial unmixing in which the

encoder component is characterized by several convolutional

layers [27], [28]. In addition to AE based unmixing, [29]

and [30] learned the deep priors of the abundance maps

rather than hand-crafted priors and integrated them in the

unmixing framework to boost the unmixing quality. Without

spectral mixture model, there is, however, still no human-

interpretable way to understand why data-driven DNNs can

perform unmixing, i.e., they are “black box” models. Their

overparameterized architecture always demands many training

samples. In practice, the high cost of collecting abundant HSIs

and difficulties of obtaining ground-truth endmembers and

abundances can also make the learning infeasible, dramatically

hindering the generalization capability [31].

Complementary to model-based and data-driven learning-

based methods, model-based DNNs embed physical models

into the design of deep architectures through the deep unrolling

technique. By introducing some learnable parameters, deep

unrolling maps each iteration of model-based methods into

a typical layer of DNNs and stacks a predefined number

of layers to form a hierarchical deep network architecture.

The unrolled networks naturally inherent advantages from

two kinds of approaches such as high interpretability, good

generalization capability, strong learning ability, and compu-

tational efficiency, overcome the difficulties of modeling the

underlying physical mechanism and need much fewer training

samples. Thanks to the above merits, deep unrolled networks

have been successfully applied in many practical applications,

such as image supperresolution [32], [33], rain removal [34],

image deblurring [35], [36] and semantic segmentation [37],

[38].

Recently, Qian et. al [39] have introduced a L1-NMF based

NN for blind unmixing (MNN-BU). MNN-BU is obtained

from LMM and corresponding iterative shrinkage-thresholding

algorithm (ISTA). It shares an AE structure. The encoder

component is obtained by unrolling ISTA and the decoder

component is an additional learnable endmember matrix set

behind the encoder. The experimental results demonstrate that

MNN-BU outperforms several baselines in terms of both

efficiency and accuracy. Despite this, we analyze MNN-BU

and find its drawbacks as follows:

1) The endmembers are hard-coded into the network via a

learnable endmember matrix during training. This means

once the network is learned, the endmembers are fixed

at the testing stage, possibly causing incompatibility

between endmembers and abundances, especially in

complex scenarios with perturbations.

2) MNN-BU only implements unrolling iterative optimiza-

tion procedure of abundances and composes two sequen-

tial steps: abundance estimation and reconstructing the

input with a learnable endmember matrix. This makes

the network short in fully absorbing the prior knowledge

embodied by the model. Therefore, the network needs

more parameters and training samples to cover the

practical complexity of unmixing.

In order to address the above problems, this paper pro-

poses a novel interpretable deep alternating neural network

for hyperspectral unmixing. It not only equips with a more

powerful physical model but also conforms to the alternating

minimization of Lp-NMF. All the parameters and submodules

are interpretable and can be connected with the optimization

of Lp-NMF and unmixing problem. Specifically, based on

LMM, we first build a non-convex Lp (0 < p < 1) sparse

NMF model and derive its alternating iterative update rules

following the proximal gradient algorithm. Thanks to the non-

convex Lp sparse inducer, the model is capable of producing

more accurate abundances. Afterward, the update rules of both

endmembers and abundances are unrolled to yield an alternat-

ing network (SNMF-Net) including End-Net and Abun-Net

submodules shown in Fig. 1. SNMF-Net is in line with the

alternating optimization of Lp-NMF and no longer hard-codes

the endmembers as a learnable matrix but alternatively predicts

them. In this way, the network is more capable of leveraging

the knowledge embodied by the model and producing more

accurate endmembers and abundances at testing. Finally, all

the parameters including p are learned by end-to-end learning,

alleviating the hyperparameters selection and providing more

adaptation to data.

The high interpretability of SNMF-Net makes it easy to

understand its unmixing mechanism and combine the prior

knowledge on the endmembers and abundances into the

network for enhanced learning. Driven by recent theoretical

research on the relationship between the network parameters

and dictionaries in the learned iterative shrinkage-thresholding

algorithm (LISTA) [40]–[43], we further precompute and

initialize the values of weight matrices using mutual coherence

minimization in sparse representation theory. This simplifies

the network learning and improves the robustness of the

network to noises and the effectiveness of unmixing. Enhanced

physical model, advanced network architecture, and improved

learning strategies help SNMF-Net dominate several alterna-

tives methods on both synthetic data and real-world data.

This paper is organized as follows: Section II introduces the

Lp sparsity-based unmixing model and its alternating iterative

optimization. In Section III, we derive the network architecture

of SNMF-Net and present its learning and implementation

details. Section IV reports the experimental results on both

synthetic and real-world data. This paper concludes in Sec-

tion V.
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Fig. 1. The framework of proposed SNMF-Net. Based on Lp norm based sparse unmixing model, SNMF-Net takes the observed spectrum as the input and
alternately predicts the endmembers and abundances using End-Net and Abun-Net submodules. All the parameters (labeled green) can be linked with the
optimization of Lp-NMF and the unmixing problem and support data-driven training.

II. Lp-NMF UNMIXING MODEL

In this section, we introduce the Lp-NMF based unmixing

model and derive its optimization procedure.

A. Linear Spectral Mixture Model

The linear spectral mixture model (LMM) is a widely

accepted physical model describing the interaction between

endmembers. LMM assumes the observed spectrum can be

linearly represented by a set of constituent endmembers, whose

weights are the fractional abundances. Given an HSI with L

bands, LMM can be formally formulated as

x = As+ e (1)

where x ∈ R
L×1 is the spectrum vector, A ∈ R

L×R is

the endmember matrix with R materials, s ∈ R
R×1 contains

the fractional abundances of the endmembers for x, and

e ∈ R
L×1 accounts for measurement errors. Using matrix

notation, Eq. (1) can be reexpressed as

X = AS+E (2)

Here X is an HSI containing L bands and N pixels, S ∈
R

R×N is its corresponding fractional abundances, and E ∈
R

L×N is the additional matrix factoring in noises.

Two constraints are usually added to Eq. (2), i.e., abundance

nonnegativity constraint (ANC) and abundance sum-to-one

constraint (ASC) for physically meaningful unmixing. ANC

means the contribution of each endmember should be never

negative and ASC limits the entire contributions of endmem-

bers should equal one. Mathematically, they are given by

ANC : S � 0

ASC : 1T
RS = 1T

N

(3)

where 1 is a vector of all ones.

B. Lp-NMF for Blind Unmixing

Nonnegative matrix factorization (NMF) is a prevailing tool

to solve Eq. (2) by decomposing the observed HSI X into

the product of two factor matrices, respectively corresponding

to endmembers (A) and abundances (S). Specifically, NMF

casts hyperspectral unmixing as an optimization problem that

minimizes the cost function

L(A,S) =
1

2
‖X−AS‖2F s.t. 1T

RS = 1T
N ,A,S � 0 (4)

Due to the non-convex objective function of NMF with re-

spect to two variables simultaneously, various priors such as

sparsity and spatial structural smoothness are embedded into

the formulation of NMF to narrow and regularize the solution

to a plausible one [44]–[46]. In particular, abundance sparsity

prior assumes that only a subset of endmembers contribute to

a pixel. Accordingly, the objective function of NMF can be

reformulated as

L(A,S) =
1

2
‖X−AS‖2F +λf(S) s.t. 1T

RS = 1T
N ,A,S � 0

(5)

where f(·) is a sparsity promoting function and λ balances

the sparsity constraint term and data fidelity term.

Generally f(·) can be realized by L0 norm of S which

is however intractable because of its NP-hard nature. An

alternative approach is to use Lp norm (0 < p ≤ 1), resulting

the following Lp-NMF based unmixing model:

L(A,S) =
1

2
‖X−AS‖2F +λ‖S‖p s.t. 1T

RS = 1T
N ,A,S � 0

(6)
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where

‖S‖p =
R∑

r=1

N∑

n=1

(srn)
p (7)

C. Model Optimization

Generally, many algorithm can be used to solve Eq. (6),

for example, alternating direction method of multipliers

(ADMM) [47] and alternating least square (ALS) algo-

rithm [48]. In our paper, we use ALS algorithm considering

its fast convergence speed and simple implementation. ALS

alternately optimizes the endmembers and abundances with

the other variable fixed. Specifically, fixing S, the subproblem

for optimizing A corresponds to

Ak+1 ← min
A

1

2
‖X−ASk‖

2
F , s.t., A � 0 (8)

where k refers to the iteration number. This is a quadratic

programming problem with a nonnegative constraint and can

be iteratively solved through the gradient descent step for

the quadratic part followed by a projection step for the

nonnegative constraint. Consequently, the updating rule of A

can be obtained, i.e.,

Ak+1 ←
[
Ak − t1k (AkSk −X)ST

k

]
+

(9)

where t1k is the step size and [·]+ = max(·, 0) guarantees the

nonnegativity of A.

Similarly, when A is fixed, we arrive at the optimization

problem for S:

Sk+1 ← min
S

1

2
‖X−Ak+1S‖

2
F+λ‖S‖p, s.t.,S � 0,1T

RS = 1T
N

(10)

Eq. (10) can be decomposed into two parts, respectively

accounting for nonnegative sparsity constraint and sum-to-one

constraint. The solution of S concerning nonnegative sparsity

constraint is

Sk+1 ←
[
GST(λ,p)

(
Sk − t2kA

T
k+1 (Ak+1Sk −X)

)]
+

(11)

where t2k is also the step size. Parameterized by λ and p,

GST(λ,p)(·) is the generalized shrinkage thresholding (GST)

operator for solving the following Lp norm regularized sparse

minimization problem:

min
s

1

2
(y − s)2 + λ|s|p (12)

The close-form definition of GST(λ,p)(·) is

s =

{
sign(y)SGST

p (|y|;λ), if |y| > ∆GST
p (λ)

0, otherwise
(13)

where the threshold ∆GST
p (λ) is given by

∆GST
p (λ) = (2λ(1− p))

1
2−p + λp(2λ(1 − p))

p−1
2−p (14)

Zuo et al. [49] have given the solution of GST(|y|;λ) by

performing the following iteration steps

xt+1 ← |y| − λpx
p−1
t (15)

where x0 = |y|.

After every iteration, the columns of Sk+1 are normalized

to satisfy the ASC constrain, i.e.,

Srn ←
Srn∑R
r=1 Srn

(16)

Eq. (16) can also serve as a normalization to prevent the trivial

solution that S is extremely small while A is arbitrary large.

Till now, under the framework of LMM, we have built the

Lp-NMF based unmixing model and induced its corresponding

iterative updating rules. Thanks to LMM, this model is highly

interpretable and two factor matrices can be respectively

explained as endmembers and abundances. Generally, the

endmembers and abundances can be obtained by alternately

executing Eq. (9), Eq. (11) and Eq. (16) for numbers of itera-

tions, which is always computationally demanding. Moreover,

selecting proper parameters such as t1k , t2k , λ and p is also

troublesome but critical for this algorithm. By contrast, the

deep neural network has higher learning capacity and the feed-

forward process is very computationally efficient because no

iteration is needed. To this end, we construct a neural network

by unrolling the iterative updating rules in Eq. (9), Eq. (11)

and Eq. (11) while retaining the attractive interpretation of

Lp-NMF based unmixing model.

III. SNMF-NET

In this section, we first build the connection between the

proximal gradient method and deep neural network and then

introduce the details of SNMF-Net and address its learning

and implementation issues.

A. Connection between proximal gradient method and DNN

As shown in Fig. 1, the proposed SNMF-Net is a joint

LMM-based network that alternately optimizes endmembers

and abundances by End-Net and Abun-Net. Both End-Net and

Abun-Net are obtained by unrolling the iterative optimization

of A and S. The optimization problems of A and S both in

essence share the following unconstrained problem:

min
u

1

2
‖Bu− v‖22 + f(u) (17)

where the first part is convex and differentiable, representing

the reconstruction term and the second part is neither necessar-

ily convex nor differentiable but has a fast proximal operator,

representing the regularization term.

Proximal gradient algorithm is a widely-used framework for

such problem with the following update rule comprising of two

fundamental steps, i.e.,

u
′

← uk − tBT (Buk − v) (18)

uk+1 ← proxtf (u
′

) (19)

where prox is the proximal operator for example soft-

thresholding operator and t > 0 is the step size. As pointed

out by [50], the upper bound of t is 1
‖BTB‖2

to satisfy the

strict convergence of the proximal gradient method. Running

Eq. (18) and Eq. (19) a number of iterations till convergence

yields the solution of u.
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From another point of view, the two steps of updating u

can be linked with a typical local block of a recurrent neural

network (RNN). Concretely, Eq. (18) accounts for a linear

operation to compute an update in the direction of the gradient

and Eq. (19) mimics an element-wise nonlinearity with a

proximal operator prox. Taking soft-thresholding operator as

an example, it can be defined as Sλ(u) = ReLu(x − λ) −
ReLu(−x−λ). When the number of iterations truncated to K

and unrolling the RNN for K times, the network becomes a K-

layer feed-forward neural network and supports discriminative

learning. Introducing two differentiable variables respectively

responsible for step size t and W = BT as network parame-

ters, Eq. (18) and Eq. (19) can be unrolled into a network with

consecutive layers being a function parameterized by {W, t}
such that

uk+1 = ϕ (uk − tW (Buk − v)) (20)

Here ϕ(·) is a non-linear activation function and k indexes

the layer corresponding to k-th iteration in the iterative update

procedure.

B. Lp-NMF Inspired Deep Alternating Neural Network

Following the above perspective, we introduce the detailed

network architecture for endmembers and abundances.

1) End-Net for Endmembers: Based on the iterative update

in Eq. (9), the unrolled subnetwork for endmember can be

defined by recursion

Ak+1 = ϕ (Ak − t1k (AkSk −X)W1k)) (21)

where ϕ(·) = max(·) is the ReLu activation function allowing

for the nonnegativity of A.

From Eq. (21), it can be found that W1k shares the same

size with the input samples, indicating that the network can

only process a fixed number of pixels at a time in order to

satisfy matrix multiplication. In practice, we always expect

the network can accept any number of pixels for testing.

Moreover, End-Net produces a set of endmembers given a set

of pixels and the endmembers may change when provided with

a different set of pixels. This is unreasonable for the unmixing

task because all the pixels in a scene should share the same set

of endmembers. To satisfy the above requirement, we instead

replace W1k with ST
k so that the network is able to accept

any number of pixels and all the pixels share the same set

of endmembers. Accordingly, the network defined in Eq. (21)

follows the iteration

Ak+1 = ϕ
(
Ak − t1k (AkSk −X)ST

k

)
(22)

Unlike the original network defined in Eq. (21), only the step

sizes {t1k} are required to learn in the network defined by

Eq. (22), significantly simplifying network training.

2) Abun-Net for Abundances: Different from A, the up-

date rule of S contains an additional iterative optimization of

SGST
p , which makes it very difficult to analyze the relationship

between Sk and (λ, p). For simplicity, we only iterate Eq. (15)

for one time, yielding the following solution for GST

η(λ,p)(y) =

{
sign(y)(|y| − λp(|y|)p−1), if |y| > ∆GST

p (λ)
0, otherwise

(23)

Setting different parameters per iteration generally helps

yield more favorable performance and accelerate the conver-

gence. This strategy has been commonly employed, especially

for non-convex problems [16], [51]–[53]. Moreover, decouple

learning across layers also is beneficial to overcome gradient

explosion and vanishing problems. To this end, we adopt this

strategy and choose different parameters {λk, pk} across the

iteration of S. Consequently, the updating rule for Sk+1 in

Eq. (11) becomes:

Sk+1 ←
[
η(λk,pk)

(
Sk − t2kA

T
k+1 (Ak+1Sk −X)

)]
+

(24)

Accordingly, the succeeding layers in Abun-Net are given by

Sk+1 = ζ(ϕ(η(λk ,pk)(Sk − t2kW2k(Ak+1Sk −X)))) (25)

where ζ(·) is a normalization layer satisfying ASC in Eq. (16).

The parameter set of Abun-Net is {t2k ,W2k , pk, λk}. Instead

of inefficiently tuning p to obtain the desired sparsity level, p

is also layer-wise learned from data, offering better adaptation

to the underlying properties of the data.

In summary, based on the LMM model, a Lp-NMF unmix-

ing model is first built. Inspired by the connection between

the PG optimization method and deep neural network, we

unroll the optimization of Lp-NMF for A and S to yield a K-

layer alternating network dubbed SNMF-Net for blind unmix-

ing. Different from alternative deep learning-based unmixing

methods, SNMF-Net is physically interpretable. On one hand,

SNMF-Net is under the framework of LMM which considers

the light interaction between materials and carefully designed

optimization. On the other hand, all the key parameters can be

seamlessly linked with the associate optimization and support

end-to-end learning. Thanks to such interpretation, all the prior

knowledge about the unmixing task, optimization algorithms,

and sparse representation theory can be easily integrated into

the network for robust learning.

C. Network Training

In blind unmixing, both A and S are unknown and thereby

it’s unrealistic to directly learn them by discriminative training.

Instead, we take the Euclidean distance between the recon-

structed spectrum and input spectrum as the loss function. Mo-

tivated by the phenomenon that adding auxiliary classifiers to

intermediate layers helps to propagate gradients back through

all the layers [54], we take the output of all the layers into

the loss function. Given training dataset X = {x1, · · · ,xN}
including N spectrum, the loss function can be defined as

LΘ =
1

2N

K∑

k=1

‖X−AkSk‖
2
F (26)

where Θ = {t1k , t2k ,W2k , pk, λk} are the parameters to be

learned and K is the number of layers. To learn the network,

the partial derivative of LΘ concerning each variable should

be computed first. For simplicity, we consider an individual
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training sample x and define the following intermediate vari-

ables

Ãk = Ak−1 − t1k−1
(Ak−1sk−1 − x) sTk−1

s̃k = sk−1 − t2k−1
W2k−1

(Aksk−1 − x)

ŝk = ϕ(η(λk−1,pk−1)(s̃k))

(27)

The partial differentials of LΘ with respect to each variable

are as follows:

∂L

∂t2k
=

∂s̃k+1

∂t2k

∂L

∂s̃k+1

∂L

∂pk
=

∂s̃k+1

∂pk

∂L

∂s̃k+1

∂L

∂λk

=
∂s̃k+1

∂λk

∂L

∂s̃k+1

∂L

∂W2k

=
∂L

∂s̃k+1

∂s̃k+1

∂W2k

∂L

∂s̃k+1
=

∂ŝk+1

∂s̃k+1

∂sk+1

∂ŝk+1

∂L

∂sk+1

∂L

∂Ãk+1

=
∂L

∂Ak+1

∂Ak+1

∂Ãk+1

∂L

∂t1k
=

∂Ãk+1

∂t1k

∂L

∂Ãk+1

(28)

∂Ak+1

∂Ãk+1
and

∂ŝk+1

∂s̃k+1
are both related to corresponding activa-

tion functions and can be respectively obtained by

∂Ak+1

∂Ãk+1

= I
Ãk+1>0

∂ŝk+1

∂s̃k+1
= Iη(λk,pk) (̃sk+1)>0 (29)

where I is an indicator function. According to Eq. (27), we

can get

∂s̃k+1

∂t2k
= W2k(x−Ak+1sk+1)

∂Ãk+1

∂t1k
= (x−Aksk)s

T
k

∂s̃k+1

∂W2k

= t2k(x−Ak+1sk)

(30)

Based on Eq. (23), each element of
∂S̃k+1

∂pk+1
and

∂S̃k+1

∂λk+1
can

respectively be derived by

∂s̃k+1

∂pk
=

{
0, s̃k+1 ≤ ∆GST

pk
(λk)

−λsign(s̃k+1)|s̃k+1|
p−1(pln(|s̃k+1|) + 1), otherwise

(31)

∂s̃k+1

∂λk

=

{
0, s̃k+1 ≤ ∆GST

pk
(λk)

−sign(s̃k+1)p(|s̃k+1|)
p−1 otherwise

(32)

Based on Eq. (16),
∂sk+1

∂ŝk+1
is

∂sk+1

∂ŝk+1
=

1

T
I−

1

T 2
ŝk+11

T
R (33)

where T =
∑

ŝk+1.

∂L
∂Ak

and ∂L
∂sk

can be respectively computed as

∂L

∂sK
= AT

K(AKsK − x)

∂L

∂AK

= (AKsK − x)sTK − t2K−1W
T
2K−1

∂L

∂s̃K
sTK−1

∂L

∂sk
= AT

k (Aksk − x) + t1k(x− 2Aksk)
∂L

∂Ãk+1

+ (I− t2kW2kAk+1)
∂L

∂s̃k+1
, k = 1 : K − 1

∂L

∂Ak

= (Aksk − x)sTk +
∂L

∂Ãk+1

(I− t1ksks
T
k )

− t2k−1
WT

2k−1

∂L

∂s̃k
sTk−1, k = 1 : K − 1

(34)

Substituting Eq.s (29), (30), (31), (32), (34) into Eq. (28)

we can get the derivations of all the variables. Once they are

obtained, all the parameters in Θ can be learned by end-to-end

training via any gradient descent method. The training process

can be summarized as follows:

1) Estimate the endmember matrix A0 using any endmem-

ber extraction algorithm, e.g., VCA.

2) Randomly sample a number of pixels to construct the

training set X = {x1, · · · ,xN} and calculate their ini-

tial abundances S0 by any traditional unmixing methods,

for example, FCLS.

3) Initialize the network with A0 and S0. In contrast to

alternative deep learning based methods, the embedded

models make it easy to integrate the prior knowledge on

unmixing into the network for enhanced learning.

4) Train SNMF-Net with stochastic gradient descent algo-

rithm till convergence to learn the network paprameters.

D. Network Implementation

It is always expected to incorporate the additional auxiliary

knowledge at hand to guide the network learning especially

when the training samples are small. Thanks to the high inter-

pretability of SNMF-Net, prior knowledge can be reasonably

integrated into the network to achieve satisfactory unmixing.

NMF based unmixing methods usually initialize the factor

matrices with the endmembers extracted by VCA [6] and

abundance estimated by FCLS [7]. For this reason, we also

adopt this strategy to initialize A0 and S0. After that, t1k and

t2k are accordingly set as 1
‖S0S

T
0 ‖2+ǫ

and 1
‖AT

0 A0‖2+ǫ
where

ǫ is a tiny number given by 0.01. p is initially assigned as 0.5

based on the observation in [12].

We follow the mutual coherence minimization in sparse rep-

resentation theory to initialize W2k . In sparse representation,

mutual coherence is an important indicator to depict the sparse

recovery quality of a dictionary defined as

µ(D) = max
1≤i6=j≤L

DT
i Dj

‖Di‖2‖Dj‖2
(35)

A dictionary with low coherence implies better sparse recovery

ability. Based on above definition, we define a generalized

mutual coherence as follows:
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Definition 1. For a dictionary D ∈ R
L×R, its generalized

mutual coherence (GMC) is given by

µ̂(D) = inf
W∈R

L×R

W
T
i Di=1,1≤i≤R

{
max

1≤i6=j≤R
WT

i Dj

}
(36)

As pointed out in [42], if W ∈ W(D) where W(D) =
{W ∈ R

L×R : attains the infimum in Eq. (36)}, the sparsity

recovery error is bounded and W can be precomputed by

solving the following problem:

arg min
W∈RL×R

‖WTD‖2F s.t.WTD = I (37)

In this way, there is no need to learn W in a data-drive manner,

significantly reducing the training complexity and improving

the robustness of a network.

When it terms to unmixing, the endmembers can be con-

sidered as dictionaries. Intuitively, we can compute W2k

using Eq. (37) when the endmembers are ready. However, the

endmembers are also unknown in the blind unmixing task,

meaning that it is unrealistic to obtain an exact solution of

W2k in advance. Fortunately, as mentioned above, VCA can

provide a good initial estimation of endmembers. For this

regard, we alternatively still keep W2k learnable and initial

them as the values computed by Eq. (37). By this means, the

prior knowledge on spare representation theory is integrated

into the network which enhances the network learning as will

be shown in the experiment section.
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Axinite HS342.3B
Chlorite HS179.3B

Fig. 2. The spectral signatures of six endmembers used in the synthetic data.

IV. EXPERIMENTS

In this section, we comprehensively evaluate the unmixing

ability of the proposed SNMF-Net on both synthetic data

and real-world data. Seven methods are selected as alternative

methods to be compared with our method, including Arctan-

NMF [17], TV-RSNMF [55], MV-NTF [18], uDAS [26],

UnDIP [30], DAEN [22] and MNN-BU [39]. Among these

compared methods, Arctan-NMF, TV-RSNMF and MV-NTF

three model-based methods. Arctan-NMF and TV-RSNMF are

based on NMF. MV-NTF is a tensor based method. uDAS

and DAEN are learning-based methods based on autoencoder.

MNN-BU is a model-based method whose network architec-

ture is obtained by unrolling the optimization of abundances.

UnDIP takes advantage of deep prior knowledge embodied

by deep neural networks to improve unmixing. All relevant

parameters are set as suggested in the original implementation.

A. Performance Evaluation Criteria

The spectral angle distance (SAD) and root-mean-square

error (RMSE) were used for quantitative performance eval-

uation. SAD measures the spectral angle between reference

endmembers Ar and estimated endmembers Âr defined as

SADr = arccos

(
AT

r Âr

‖Ar‖‖Âr‖

)
(38)

RMSE computes the error between reference abundance map

Sr and estimated map Ŝr, mathematically formulated as

RMSEr =

(
1

N
|Sr − Ŝr|

2

) 1
2

(39)

The small values of SAD and RMSE imply better unmixing.

B. Experiments on Synthetic Data

Six pure signatures (Carnallite, Ammonio-jarosite, Alman-

dine, Brucite, Axinite, and Chlonte) covering 224 bands with

wavelengths between 0.38µm and 2.5 µm were first selected

from the USGS library 1 to generate endmembers. Their

spectral curves are displayed in Fig. 2. Following [19], the

abundances were generated as follows:

1) A synthetic image containing z2×z2 pixels is segmented

into z2 nonoverlapped regions with the same size of

z × z.

2) Each pixel of a region is filled with two randomly

selected endmembers whose ratios are respectively given

as β and 1− β.

3) A spatial low-pass Gaussian filter whose variance is set

to 2 is used to generate mixed pixels, resulting in a

relatively higher degree of mixing.

4) Finally, the fractions of all endmembers in each pixel

are rescaled to meet the ASC constraint.

In our experiment, we set z = 8 and β = 0.8 to generate the

synthetic data. The generated clean HSI is further degraded

by zero-mean additive Gaussian to produce noisy HSI with

signal-to-noise ratios (SNRs) defined as

SNR = 10 log10
E[yTy]

E[eTe]
(40)

where y and e are the clean signal and the noise at a pixel

and E[·] denotes the expectation operator.

1) Influence of the number of layers: We first analyze the

influence of layers on unmixing accuracy. The clean HSI was

degraded by Gaussian noise with SNR=30dB and the training

size was set to 500. By altering K from 3 to 30 with an

interval of 3, Fig. 3 presents the changes of SAD and RMSE.

It can be seen that both SAD and RMSE decrease rapidly

when K increases from 3 to 9, implying the positive effect

of deep models. After reaching the bottom at K = 9, SAD

1https://www.usgs.gov/labs/spec-lab/capabilities/spectral-library
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Fig. 3. SAD and RMSE with respect to the number of layers.
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Fig. 4. Learned Lp sparse penalty with respect to K values.

gradually increases and RMSE almost stays steady. This may

because the network parameters increase as the number of

layers increases, which requires more data to learn. Since the

best values of SAD and RMSE are obtained when K = 9, we

set the number of layers to 9 in the following experiments.

This experiment shows very few layers of SNMF-Net is

able to produce promising unmixing, confirming its strong

representing ability.

When K = 9, we demonstrate the learned p concerning the

number of layers. As shown in Fig. 4, in the first few layers,

Lp norm is close to L0 norm, indicating that the network

tends to obtain a very sparse estimation of abundance maps

which helps to suppress the side-effect of perturbation. When

K is over 7, the p value increases to 0.2636, meaning that

the network is learning to produce less sparser solution. This

is also in line with that as the number of iterations increases,

the optimization algorithm gradually converges and smaller

penalties should be added. Moreover, compared with the fixed

L1 norm, our network is more adaptive to the data as p is

learned from the data. Unlike L1 norm, the proposed is able

to yield sparser and unbiased abundances because the gradient

of learned Lp norm decreases as x increases, which means

large magnitudes components are less possible to be shrunk

to 0. In short, this experiment verifies the interpretability of

the proposed SNMF-Net.

2) Influence of the number of training samples: In this

experiment, we investigate the impact of the number of

training samples on unmixing. We set SNR=30dB to gen-

erate the noisy HSI. Fig. 5 plots the SAD and RMSE

changes with the number of training samples in the range of

{64, 256, 500, 1000, 2000, 4096}. As can be seen from Fig. 5,

without using all the pixels for training, i.e., only 500 pixels

(12.21% of all the pixels), the network can achieve as satisfy-

ing performance as unmixing with all pixels. This phenomenon

evidently shows the strong learning and generalization ability

of SNMF-Net. The main reason is that SNMF-Net takes the

spectral mixture model and the alternating optimization of

Lp-NMF into consideration to build the network architecture.

All the key components of the proposed SNMF-Net are

explainable, facilitating the integration of prior knowledge of

unmixing into the network for enhanced learning.

3) Influence of Initialization: As mentioned in the network

implementation, we adopt Eq. (37) to initialize W2k which

is induced by GMC theory to enhance learning. Here we

conducted a study on the effect of such initialization. Fixing

the number of training samples as 500 and changing SNR from

15dB, 20dB, 25dB, 30dB to ∞ (noise-free), Fig. 6 reports

the SAD and RMSE changes with or without GMC based

initialization. Here “SNMF-Net without GMC” refers to set-

ting W2k = AT . It can be clearly observed that GMC-based

initialization helps SNMF-Net achieve significantly better and

robuster unmixing performance. This experiment shows the

effectiveness of GMC based initialization and the benefit of

interpretable network architecture.

Attributing to the embedded physical model, the prior

knowledge learned or based on domain knowledge concering

unmixing can be flexibly incorporated into the network to

enhance network learning. We further initialized the network

by NMF whose results is denoted as SNMF-Net-NMF. Fig. 7

compares SAD and RMSE with respect to different initializa-

tions. As can be seen, using NMF to initialize the network

yields lower SAD and RMSE because NMF can provide

more accurate endmembers and abundances, specially in lower

SNR cases. This experiment evidently show the benefits of

model-based neural network, i.e., easy incorporation of prior

knowledge.

4) Robustness to noise: We further compared SNMF-Net

with alternative methods to demonstrate its superiority in

unmixing. The SNRs were selected as 15dB, 20dB, 25dB,
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Fig. 5. SAD and RMSE with respect to the number of training samples.
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Fig. 7. The impact of different initalizations.

30dB and ∞ (noise-free). Based on the above experiment

observations, we used 500 pixels to train SNMF-Net. The other

compared methods utilized all the pixels to conduct unmixing.

Fig. 8 presents the unmixing performance of all the methods

regarding SNR settings. In general, most of the unmixing

methods show descending trend as the SNR increases. UnDIP

provides inferior SAD and RMSE because it estimates end-

members and abundances in sequence rather than simultane-

ously. The failure of endmember extraction unavoidably causes

poor abundance estimation. Moreover, it can be seen from

the figure that MV-NTF outperforms TV-RSNMF, especially

in high SNR scenarios thanks to its inherent advantages of
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Fig. 8. Performance of all eight unmixing methods with respect to different noise levels in terms of (a) SAD and (b) RMSE.

(a) (b) (c)

Fig. 9. Three real-world data sets shown in gray. (a) 3rd band image of Jasper Ridge. (b) 80th band image of Urban. (c) 3rd band image of Washington DC
Mall.

TABLE I
MEANS AND STANDARD DEVIATIONS OF THE SAD ON JASPER RIDGE DATASET.

Algorithm TV-RSNMF [55] MV-NTF [18] DAEN [22] uDAS [26] MNN-BU [39] UnDIP [30] SNMF-Net

Tree 0.0776±4.91% 0.2209±2.17% 0.1774±0.82% 0.1511±1.37% 0.0468±0.32% 0.1493±0% 0.0478 ±1.62%
Water 0.1337±1.31% 0.2352±1.65% 0.3237±1.42% 0.1742±11.39% 0.1179±0.23% 0.2529±0% 0.0855±1.77%
Soil 0.1047±10.11% 0.1752±4.67% 0.1123±2.03% 0.1639±6.09% 0.0357±0.43% 0.1144±0% 0.0443±3.09%

Road 0.6515±27.46% 0.1741±4.35% 0.0588±1.59% 0.0597±0.27% 0.0901±0.37% 0.2757±0% 0.0875±0.05%
Mean 0.2419±3.06% 0.2015±1.77% 0.1680±0.43% 0.1373±3.27% 0.0726±0.11% 0.1981±0% 0.0663±1.04%

preserving the spatial-spectral structure of HSIs. Compared

with three model-based methods, DAEN, uDAS, and SNMF-

Net provide more desirable unmixing. Among them, the most

promising unmixing results belong to the proposed SNMF-

Net even using only 12.21% of pixels. This attributes to that

SNMF-Net is equipped with the hybrid advantages of model-

based methods and learning-based methods.

C. Experiments on Real-world Data

We further carried out experiments on three widely used

real-world HSIs, Jasper Ridge, Urban, and Washington DC

Mall to more comprehensively show the advantages of SNMF-

Net. The same as the synthetic experiment, 500 randomly

sampled pixels were adopted for training SNMF-Net. Because

of the unavailability of ground-truth endmembers and abun-

dances, we instead selected several pixels that are most likely

to be pure pixels and set their spectral signatures as reference

endmembers. After that, the reference abundances maps were

obtained using CVX MATLAB software.

1) Jasper Ridge Dataset: Jasper Ridge dataset was col-

lected by AVIRIS sensor and contains 512 × 613 pixels and

224 spectral channels, covering wavelength from 380 to 2500

nm. We considered a part of it with 100 × 100 pixels doing

experiments. After removing bands corrupted by noise and low

SNR and water-vapor absorption, 198 bands were retained for

experiment. Fig. 9(a) presents the third band image of Jasper

Ridge HSI. In the experiment, we set four kinds of materials

as endmembers, including tree, water, soil, and road.

Table I provides a quantitative comparison of all the com-

peting methods with respect to the SAD index. From Table I,

it can be seen that MV-NTF performs better than TV-RSNMF

thanks to the consideration of the spectral-spatial structure of

hyperspectral images powered by tensor algebra. The standard
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Fig. 10. Estimated endmembers by seven unmixing methods on the Jasper Ridge dataset. From top to bottom, the rows are the spectral signatures of tree,
water, soil, and road, respectively. Solid lines denote the reference endmembers and dashed lines denote the estimated endmembers.
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Fig. 11. Estimated abundance maps by seven unmixing methods on the Jasper Ridge dataset. From top to bottom, the rows are the abundance maps of tree,
water, soil, and road, respectively.

deviations of UnDIP are zero because UnDIP adopts the

simplex volume maximization (SiVM) [56] method to extract

endmembers which is insensitive to initializations. Compared

with DAEN, learning-based methods with sparsity constraints,

i.e., uDAS, MNN-BU, and SNMF-Net perform better. MNN-

BU and SNMF-Net surpass uDAS because they simulta-

neously take the advantages of model-based and learning-

based methods for unmixing. Though provided with better

performance than two model-based methods, UnDIP provides

unsatisfactory SAD than alternative learning-based methods.
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TABLE II
MEANS AND STANDARD DEVIATIONS OF THE SAD ON URBAN DATA.

Algorithm TV-RSNMF [55] MV-NTF [18] DAEN [22] uDAS [26] MNN-BU [39] SNMF-Net

Asphalt 0.1028±1.17% 0.1720±0.75% 1.0224±0.27% 0.2174±0.04% 0.1227±1.24% 0.2477±0.93%
Grass 0.1463±1.40% 0.1974±2.97% 0.5122±0.29% 0.6862±33.88% 0.1234±0.88% 0.2131±2.81%
Tree 0.2628±1.72% 0.1284±0.32% 0.0801±0.01% 0.0955±1.12% 0.1113±0.20% 0.1848±2.05%
Roof 0.3332±8.00% 0.3608±3.66% 0.1069±0.03% 0.2037±2.37% 0.3558±3.80% 0.0554±2.56%

Mean 0.2113±1.04% 0.2147±0.96% 0.4304±0.02% 0.3007±8.79% 0.1783±1.22% 0.1753±0.55%
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Fig. 12. Estimated endmembers by six unmixing algorithms on the HYDICE Urban dataset. From top to bottom, the rows are the spectral signatures of
asphalt, grass, tree, roof, respectively.

The main reason is that UnDIP precomputes the endmem-

bers by SiVM and keeps endmembers fixed for abundance

estimation. Proposed SNMF-Net stands out among all the

methods. On one hand, SNMF-Net adopts alternating network

architecture to estimate endmembers and abundances, which

fully accords with the alternating optimization of Lp-NMF. On

the other hand, SNMF-Net absorbs the spectral mixture model

for network constructing and incorporates the prior knowledge

on the unmixing problem and sparse representation theory for

enhanced learning.

Fig. 10 and Fig. 11 respectively demonstrates the endmem-

bers and abundance map generated by all the methods. The

higher brightness (black to white) indicates larger abundance

values ( 0 to 1). Learning-based approaches produce more

attractive abundances because of higher learning capacity.

SNMF-Net matches best with reference targets and ranks

first among all methods, especially the soil and road target

whereas other methods such as TV-RSNMF and MV-NTF

have some difficulties in accurate estimation. The experiment

further proves the superior unmixing ability of SNMF-Net.

2) HYDICE Urban Dataset: This HSI was acquired by

the HYDICE sensor and covers 307 × 307 pixels and 210

bands from 0.4 to 2.5 µm. Urban HSI was corrupted by

various noises, which threaten challenges for unmixing. We

removed some relative low-SNR bands and water-vapor bands,

leaving 162 bands to conduct experiment whose 80-th band is

illustrated in Fig. 9(b). We set four material targets, including

roof, grass, asphalt road, and tree. The Urban dataset contains

outliers and noises, which makes it difficult to extract end-

members accurately. For this reason, UnDIP can only extract

one endmember, leaving and we didn’t include its unmixing

result in this experiment.

Table II quantitatively compares the endmembers generated

by all the methods in terms of the SAD index. It can be

observed MNN-BU and SNMF-Net provides comparatively

better unmixing performance because of the hybrid advantages

of learning-based and model-based methods. SNMF-Net is

slightly superior to MNN-BU using half as many training sam-

ples as MNN-BU, showing its better learning ability. Fig. 12

and Fig. 13 respectively gives a visual comparison between

all the competing methods. In general, all the methods can

not adequately estimate roof and asphalt because of the their

relatively less number of training samples and the negative

effect of outliers and noises. Proposed SNMF-Net dominates

other compared methods by sharing more similarities with the

reference ones.
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Fig. 13. Estimated abundance maps by six unmixing algorithms on the HYDICE Urban dataset. From top to bottom, the rows are the abundance maps of
asphalt, grass, tree, roof, respectively.

TABLE III
MEANS AND STANDARD DEVIATIONS OF THE SAD ON WASHINGTON DC MALL DATA

Algorithm TV-RSNMF [55] MV-NTF [18] DAEN [22] uDAS [26] MNN-BU [39] UnDIP [30] SNMF-Net

Tree 0.20711±1% 0.1211±0.53% 0.1378±2.33% 0.0939±2.15% 0.1906±0.23% 0.0795±0% 0.1309±1.06%
Grass 0.2961±4.34% 0.2357±0.40% 0.3773±17.84% 0.2888±6.03% 0.3513±6.84% 0.2483±0% 0.2180±2.09%

Street 0.3338±1.57% 0.4183±0.75% 0.3870±17.49% 0.3270±10.34% 0.2376±6.46% 0.4216±0% 0.3836±0.79%
Roof 0.2163±2.84% 0.0818±3.46% 0.1855±10.50% 0.0801±3.06% 0.0915±0.28% 0.3539±0% 0.0356±0.51%
Water 0.0466±0.53% 0.1317±0.70% 0.1760±5.88% 0.1264±9.28% 0.1544±2.28% 0.0784±0% 0.0602±1.70%
Mean 0.2200±0.51% 0.1977±0.80% 0.2527±3.42% 0.1833±1.99% 0.2051±0.53% 0.2363±0% 0.1657±0.63%

3) Washington DC Mall Dataset: The original Washington

DC Mall dataset includes 1208 × 307 pixels and 210 bands

of spectral resolution 9.52nm. We used a subimage containing

150 × 150 pixels and 191 bands for experiments by remov-

ing the noisy spectral bands (103-106, 138-148, 207-210).

Fig. 9(c) shows the third-band image of DC Mall dataset. It

was assumed that the image provides tree, grass, street, roof,

and water materials.

Table III presents a comparable SAD of all the methods.

Using only 500 pixels, SNMF-Net outperforms all other

competed methods, showing the advantages of absorbing the

knowledge of model-based methods into learning-based meth-

ods for unmixing. Fig. 14 and Fig. 15 describe the endmem-

bers and abundances generated by all the methods. The deep

prior learned by the neural networks helps UnDIP achieve

more accurate endmembers and abundance maps on the tree

and roof target. As the phenomenon revealed in Table III,

SNMF-Net performs better in tree, water, roof target but is

inferior to alternative methods in street and grass targets. This

may because the spectral signature of the latter two targets are

respectively very similar to water and tree, making SNMF-Net

difficult to distinguish especially using only a subset of all the

pixels to train the network parameters.

V. CONCLUSION

In this paper, we propose an interpretable network SNMF-

Net for unmixing by unrolling the optimization of Lp sparsity

constrained NMF unmixing method. SNMF-Net equips with

the hybrid merits of model-based and learning-based methods.

The network architecture of SNMF-Net is consistent with the

linear spectral mixture model and the alternating optimization

of Lp-NMF. All the parameters are explainable and support

end-to-end training. Experimental results on both synthetic and

real-world HSI show the advantages of SNMF-Net over many
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Fig. 14. Estimated endmembers by seven unmixing algorithms on the Washington DC Mall Data. From top to bottom, the rows are the spectral signatures
of tree, grass, street, roof, water, respectively.

state-of-the-art methods, i.e., higher interpretability, stronger

learning ability, less requirement of training samples, and easy

integration of domain knowledge. We will incorporate the

spatial information into the network for improved unmixing

in our further research.
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