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Abstract—Hyperspectral image (HSI) denoising is an ill-posed
inverse problem. The underlying physical model is always im-
portant to tackle this problem, which is unfortunately ignored
by most of the current deep learning (DL)-based methods,
producing poor denoising performance. To address this issue,
this paper introduces an end-to-end model aided nonlocal neural
network (MAC-Net) which simultaneously takes the spectral low-
rank model and spatial deep prior into account for HSI noise
reduction. Specifically, motivated by the success of the spectral
low-rank model in depicting the strong spectral correlations and
the nonlocal similarity prior in capturing spatial long-range
dependencies, we first build a spectral low-rank model and
then integrate a nonlocal U-Net into the model. In this way,
we obtain a hybrid model-based and DL-based HSI denoising
method where the spatial local and nonlocal multi-scale and
spectral low-rank structures are effectively exploited. After that,
we cast the optimization and denoising procedure of the hybrid
method as a forward process of a neural network and introduce
a set of learnable modules to yield our MAC-Net. Compared with
traditional model-based methods, our MAC-Net overcomes the
difficulties of accurate modeling thanks to the strong learning
and representation ability of DL. Unlike most “black-box” DL-
based methods, the spectral low-rank model is beneficial to
increase the generalization ability of the network and decrease
the requirement of training samples. Experimental results on the
natural and remote sensing HSIs show that MAC-Net achieves
state-of-the-art performance over both model-based and DL-
based methods. The source code and data of this article will be
made publicly available at https://github.com/bearshng/mac-net
for reproducible research.

Index Terms—Hyperspectral image denoising, model-based
neural network, low-rank representation, nonlocal representa-
tion.

I. INTRODUCTION

Hyperspectral image (HSI) has enabled many practical

applications for example medical analysis [1], urban plan-

ning [2], object tracking [3], thanks to its material identifi-

cation ability enabled by numerous contiguous narrow bands.

Because of the environment interference, sensor defection,
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data transmission, and other factors, the captured HSI is

unavoidably contaminated by noises [4]. As a crucial and in-

dispensable preprocessing step, hyperspectral image denoising

is becoming increasingly important for high-quality imaging

and has attracted extensive attention, recently [5]–[7].

HSI denoising is an ill-posed inverse problem recovering the

underlying clean HSIs from noisy observation and its forward

process is the formulation of HSIs. Model-based methods

rely on the prior knowledge of image at hand and explicitly

introduce various mathematical models depicting the physi-

cal properties of underlying clean HSIs and the observation

process to carry out denoising. Models can be formulated in

various forms and have been gradually improving over the

past years from sparsity [8]–[11] and low-rankness [12]–[14]

to local/nonlocal similarity [15]–[17] and so on. Model-based

methods are interpretable, have high generation ability, and

don’t heavily rely on the training samples. However, model-

based methods often formulate denoising as an optimization

problem which typically requires time-consuming numerical

iteration and exhausting parameter twisting to produce high-

quality denoising. Moreover, it is important to understand that

there is no such a “correct model” that can accurately relate

the observed HSIs and the desired clean HSIs, especially in

complex scenarios. The absence of an accurate model often

leads to denoising failure and also limits the applicability of

model-based methods. Therefore, it is always a difficult and

important task to establish a flexible and accurate mathemati-

cal model.

Thanks to the high representation and strong learning ability,

deep learning (DL)-based methods have also been applied in

HSI denoising. Instead of principled hand-crafted models, DL-

based methods parametrize the model with learnable network

architectures such as spectral-spatial attention [18], spectral-

spatial convolution [19], [20] and residual learning [21] and

introduce various loss functions [20] to directly learn the

nonlinear mapping from noisy HSIs to clean HSIs. Com-

pared with model-based methods, data-driven DL methods

are independent of the physical models. Their architectures

are generic and can handle noises even in scenarios where

accurate noise models are unknown when provided with

enough samples. The drawbacks of data-driven DL-based HSI

denoising are twofold. On one hand, without the guidance

of physical models, DL-based methods are black-boxes and

there is still no human-interpretable way to understand their

denoising mechanism. On the other hand, their overarameter-

ized architectures always demand large scale of noisy-clean

HSI pairs to train on, which are costly to acquire. As a result,
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the interpretability, flexibility, and reliability of DL-based HSI

denoising are actually a matter of concern [22].

As mentioned above, both model-based and DL-based meth-

ods have their merits and also defects. As far as we know,

how to effectively integrate the advantages of the two methods

while circumventing their disadvantages for HSI denoising

remains to be explored. To fill the gap, in this paper, we

propose a Model Aided nonlocal neural Network (MAC-

Net) to bridge model-based and DL-based methods for HSI

denoising. Fig. 1 illustrates the framework of our MAC-

Net. Specifically, motivated by the success of spectral low-

rank representation in spectral correlation exploitation, we first

establish a low-rank model which projects the observed HSI

into a much lower subspace spanned by a few spectra. In this

way, the spectral low-rank prior of HSIs is explicitly depicted.

Moreover, the nonlocal similarity prior can capture the long-

range decencies among different spatial contents of an HSI

and always improves HSI denoising performance [23], [24].

To this end, we then embed a nonlocal attention block into U-

Net to construct a nonlocal convolutional neural network and

then integrate it into the spectral low-rank model, formulating

a hybrid model-based and DL-based method. The nonlocal

attention block is mathematically equivalent to dot-product

attention [25], [26] but has relatively high memory and compu-

tational efficiency, allowing for more flexible integration into

the high-resolution part of the network. After that, we cast the

optimization step of the hybrid method as a forward process

of a neural network to yield our model aided neural network

for HSI denoising. Finally, all the parameters of MAC-Net are

learned by end-to-end training.

Our MAC-Net has the hybrid advantages of model-based

and DL-based methods. On one hand, the spectral low-rank

model reasonably allows our MAC-Net to more effectively

capture the strong spectral correlation and exploit the estab-

lished benefits of model-based methods such as high inter-

pretability, superior generalization ability, and less requirement

of training samples. On the other hand, the nonlocal U-Net can

capture the local and nonlocal multi-scale spatial structure.

Data-driven learning also greatly helps MAC-Net enhance the

original spectral low-rank model and reduce the overall model

error induced by inaccurate model construction. As a result,

our MAC-Net has the virtue of strong representation ability,

superior generalization ability, and high denoising capacity,

especially in complex environments. Experimental results on

synthetic data and real-world HSIs show that our MAC-Net

achieves convincing improvements over many state-of-the-art

model-based and DL-based methods.

The contributions of this paper can be summarized as

follows: 1) We combine advantages of model-based and DL-

based methods to develop a spectral low-rank model aided

neural network with high denoising capacity. 2) We introduce a

lightweight nonlocal attention block to more efficiently utilize

the nonlocal dependencies for improved denoising.

This paper is organized as follows: Section II briefly reviews

recent works on model-based and DL-based HSI denoising

as well as model-based deep learning. In Section III, we

derive the network architecture of MAC-Net and present its

learning and implementation details. Section IV reports the

experimental results on both synthetic and real-world data and

compare them against several other competing approaches.

This paper concludes in Section V.

II. RELATED WORK

This section briefly introduces recent works concerning

model-based and deep learning-based HSI denoising methods

and also the model-based deep learning.

1) Model-based HSI Denoising: Each band of the hyper-

spectral image can be regarded as a gray-level image and

state-of-the-art denoising methods such as block matching 3D

filtering (BM3D) [27] and K singular value decomposition

(K-SVD) [28] can be independently performed for HSI de-

noising in a band-wise manner. Band-wise methods ignore the

spectral-spatial correlations among bands and thereby achieve

inferior denoising. By modeling an HSI in a 3D cube [29]

or with tensors [30], spectral-spatial methods jointly exploit

the spatial and spectral information and are more capable of

removing noise.

Natural HSI has many physical properties such as sparsity,

low-rankness, and nonlocal self-similarity, which have in-

duced many state-of-the-art methods in HSI denoising. Sparse

representation-based models assume clean HSI resides in a

subspace spanned by a few atoms in a dictionary. By sparsely

encoding an HSI over fixed dictionaries such as 3D wavelet

and 3D discrete cosine transformation (DCT) [31] or adap-

tively learned dictionaries [9], [10], the noise component can

be removed to a large extent. In addition to sparse models,

the high spatial similarity and strong spectral correlation also

imply the low-rank characteristic of HSIs. Low-rank matrix

approximation methods such as matrix factorization [5], [32]

and matrix rank minimization [33] emerge as useful tools

to recover the underlying low-rank structure of HSIs. The

estimation of matrix rank is an NP-hard problem and is typi-

cally approximately estimated by the nuclear norm. L1 norm-

based nuclear norm is inclined to punish more on components

with larger singular values, which however are more likely

related to the predominant edges of HSIs, resulting in detail

loss in denoised HSIs. In contrast, nonconvex variants of the

nuclear norm, for example, weighted Schatten p-norm [34]

and normalized ǫ-penalty [35] can better recover the low-

rank structure of HSIs and thereby enhance HSI denoising

performance.

Matrix-based methods unavoidably destroy the spectral-

spatial structural correlation of HSIs when converting a 3D

HSI into a 2D matrix. For this reason, tensor-based methods

have attracted intensive attention these years [36]–[39] thanks

to their superior advantages of modeling HSIs without infor-

mation loss. Accordingly, Peng et al. constructed a nonlocal

tensor dictionary learning model to depict the nonlocal spa-

tial similarity and global spectral correlation of HSIs [40].

Moreover, many pieces of research focus on defining different

types of tensor nuclear norm [36], [41] to measure the intrinsic

correlations across various tensor modes so that the clean HSI

can be more accurately extracted from the noisy observation.

Besides low-rankness and sparsity priors, other HSI priors

such as local similarity [42], nonlocal similarity [43] and joint
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Fig. 1. Illustration of our MAC-Net. MAC-Net is a hybrid model-based and data-driven DL-based method. The spectral low-rankness module explicitly
describes strong spectral correlations and the nonlocal 3D U-Net module implicitly characterizes the spatial structures. As a result, MAC-Net not only
overcomes the difficulties of accurately modeling the true physical properties of HSIs because of the strong representation ability of deep learning but also
has superior generalization ability thanks to the embedded physical model.

use of multiple priors [23], [24] provide stronger image models

for HSI denoising. For example, [24] and [23] integrated

the spatial self-similarity prior with spectral low-rank prior

and achieved fast and impressive denoising. Wang et al. [44]

embedded the spectral-spatial total variation regularization into

low-rank Tucker decomposition to characterize the spectral-

spatial piecewise-smooth and low-rank structures of HSIs.

Model-based methods are easily understandable and do not

heavily rely on data to handle noise despite the requirement

of a small number of data to estimate unknown model param-

eters. However, simplified hand-crafted priors possibly are not

able to truly capture the actual diversity and complexity of

practical HSI denoising, limiting the applicability of model-

based methods.

2) Deep Learning-based HSI Denoising: Inspired by the

noticeable success of deep learning in high-level tasks [45],

DL-based methods have also been applied in HSI denoising.

DL-based methods learn an explicit mapping between the

noisy HSIs and clean HSIs from large-scale datasets, also

known as deep prior. How to effectively preserve the spectral-

spatial structure of HSIs is a key issue in DL-based HSI

denoising. Early work [20] and [21] used multiple channels

of 2D convolutions to exploit the spectral-spatial structure

correlation of HSIs but has high computational complexity.

Further, Shi et al. [18] took advantage of 3D atrous convolu-

tion to simultaneously exploit the spectral-spatial information

of HSIs while increasing the receptive field. Dong et al. [19]

decomposed 3D convolution into 2D spatial convolution and

1D spectral convolution to reduce the number of parameters

and computational complexity. Alternatively, Wei et al. [46]

combined 3D convolution with quasi-recurrent pooling to

more effectively capture the global spectral correlation. In

addition to spectral-spatial representation, multiscale feature

expression and residual learning were also employed in [21]

and [18] to enhance denoising performance. Maffeiet al. [47]

took the noise-level map as an input to train a single network

that is adaptive to multilevel noise. Yuan et al. [48] developed a

noise intensity estimation block to estimate the noise and used

it to guide the subsequent denoising, increasing the adaptivity

of the network to different datasets.

Though data-driven DL-based methods can recover the

clean HSIs by training the networks on a large number of

training data, the domain knowledge of HSIs such as the

observation model and underlying characteristics of HSIs are

not fully utilized. As a result, complicated architectures and

massive training data are demanded to cover the real-world

complexity of HSI denoising. The “black-box” nature of data-

driven DL-based methods makes it difficult to understand their

denoising mechanism and provide performance reliability, too.

3) Model-based Deep Learning: Model-based deep learn-

ing integrates the domain knowledge into the network in the

form of an established physical model while preserving the

learning capacity of DL-based methods from data. Such a

data-driven model-based scheme inherits the hybrid advan-

tages of both methods such as superior interpretability, high

generalization ability, and strong representation ability. With

above virtue, model-based DL have be widely applied in

hyperspectral unmixing [49], [50] and super-resolution [51],

[52] and achieved impressive performance. Following this

line, we aim to combine the spectral low-rank model with

spatial deep prior of HSIs and construct a spectral low-rank

model aided nonlocal network to achieve more effective HSI

denoising.
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III. MAC-NET FOR HSI DENOISING

In this section, we introduce the details of the proposed

MAC-Net and address its implementation details.

A. Model Formulation

Let Y be a noisy observed HSI containing N pixels and L

bands. Under the assumption that the clean HSI is corrupted by

additive Gaussian noise, we have the following observational

model

Y = X+E (1)

where X ∈ R
L×N is the underlying clean HSI and E ∈ R

L×N

measures the noise item.

Generally, Eq. (1) is an ill-posed inverse problem that sep-

arates underlying clean X from noisy observation Y. Model-

based methods tackle this problem under the premise that there

are a set of mathematical properties that the HSI is believed

to follow. Because of the strong correlation among spectral

bands, HSIs have spectral low-rankness. Mathematically, low-

rankness implies there are many zero entries in the singular

vector of a matrix. Fig. 2 presents the singular values of the

unfolding matrix along the spectral dimension of Washington

DC HSI. As can be seen from the figure, the singular values

show an obvious decaying trend in the spectral domain and

most values are zero or nearly zero. This means that high-

dimensional HSI X essentially resides in a K-dimensional

subspace with K ≪ L.

0 50 100 150 200
Bands

0

100

200

300

400

500

S
in

gu
la

r 
va

lu
es

Fig. 2. Singular value curve of the unfolding matrix of a clean HSI along
spectral dimension.

Following this line, a straightforward way to model the

spectral low-rank structure of X is to decompose it into the

product of two factor matrices, with one being the basis matrix

spanning the subspace and the other one being the coefficient

matrix. Accordingly, the model in Eq. (1) can be reformulated

as

Y = DW +E (2)

Here, D = [d1, · · · ,dk] ∈ R
L×K denotes K basis in spectral

domain with K ≪ L to capture the spectral redundancy and

W is the the coefficients matrix of X with respect to D. K can

be identified by hyperspectral signal subspace identification by

minimum error (HySime) method [53]. In our implementation,

we set D as an orthogonal matrix, i.e., DTD = I where I is

an identity matrix as it can reduce the complexity of the model

and accelerate the numerical optimization [54].

Assuming the noise follows independent and identically

distribution (i.i.d), under the framework of the maximum a

posteriori (MAP) estimation framework, the denoising model

in Eq. (2) can be reformulated as the following constrained

least square problem:

min
W,D

1

2
‖Y −DW‖2F s.t. DTD = I (3)

The spectral low-rank prior is not sufficient by itself to

capture the physical characteristics of clean HSIs, possibly

leading to the loss of image details. In addition to spectral

low-rank prior, there are also many models depicting the

spatial properties of HSIs, such as sparsity, low-rankness,

and local/nonlocal similarity. However, all of these priors are

hand-crafted and a simplified approximation of the real spatial

property of underlying clean HSIs. Compared with explicitly

hand-crafted modeling, data-driven deep neural networks di-

rectly learn the nonlinear mapping from data. The network

implicitly embodies the prior knowledge inside the data, for

example, denoising prior. Incorporating the deep prior into the

optimization objective function, the model in Eq. (3) can be

rewritten as

min
W,D

1

2
‖Y −DW‖2F + λf(W) s.t. DTD = I (4)

where f(W) represents the implicit spatial priors embodied

by deep neural network. Here, we add regularization on W

instead of X. On one hand, the original noisy HSI is spectrally

redundant. It is expected to obtain more accurate spatial

structure expression from compact subspace so as to promote

HSI denoising. On the other hand, W is much smaller than X

and the network needs to estimate a small number of variables,

reducing computational complexity during processing.

B. Algorithm Optimization

The objective function in Eq. (4) has two unknown variables

and we solve them one by one as below. The optimization

problem of D is

D̂ =arg min
DTD=I

‖Y −DW‖2F

=arg min
DTD=I

tr[(Y −DW)T(Y −DW)]

= arg max
DTD=I

tr(YWTDT)

=UVT

(5)

where U and V respectively contains the left and right singular

vectors of YWT. The subproblem of solving W is

min
W

1

2
‖Y −DW‖2F + λf(W) (6)

As D is an orthogonal matrix, solving Eq. (6) amounts to

min
W

1

2λ
‖DTY −W‖+ f(W) (7)

In Eq. (7), DTY can be seen as the projected image of Y with

respect to the basis set D. From this point of view, Eq. (7) can

be considered as a denoising problem and f(·) is a denoiser.
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The solution of W is thus can be obtained by Ŵ = f(D̂TY)
where λ is absorbed into the network.

Iteratively running Eq. (5) and Eq. (7) for numbers of times

yields the solution of D and W, which is time-consuming.

Alternatively, as in [23] and [24], we propose to relax the

optimization problem of D as

{D̂,W̄} = arg min
W,DTD=I

‖Y −DW‖2F (8)

whose close form solution can be obtained by performing the

truncated SVD of Y, i.e., YK = UKΣKVT

K and setting D̂ =

UK ,W̄ = D̂TY. After that W̄ is further denoised by f(·) to

yield Ŵ. In this way, the solution of D only depends on Y

and there is no need to iteratively optimize W and D. Finally,

the clean image can be recovered by X̂ = D̂Ŵ.

As pointed in previous research [9], in real-world HSIs,

the noise intensity in the same band is identical but varies

in different bands. That is to say the noises are spatially i.i.d

but spectrally non-i.i.d and E ∼ N (0,Σ). Σ is a covariance

matrix size of L × L and can be generally assumed positive

definite and estimated by Hysime [53]. Provided with Σ, we

can convert non-i.i.d noise to i.i.d noise with

Y′ = Σ− 1

2Y (9)

where Σ− 1

2 is the the square root of Σ−1 and Σ−1 is the

inverse matrix of Σ. Accordingly, the model in Eq. (1) can be

reformulated as

Y′ = Σ− 1

2X+Σ− 1

2E (10)

Then D and W can be computed by Eq. (8) and Eq. (7) and

the clean image is recovered by X̂ = Σ
1

2 D̂Ŵ.

Overall, the denoising procedure can be summarized in

Algorithm 1. Algorithm 1 contains five steps and all the

steps are carried out in sequence with no iterations, making

it fast for denoising. However, as a drawback of relaxed

optimization of D, there is no guarantee that the overall

procedure seeks to find an estimated HSI closest to the ground

truth HSI with minimum mean square error because of no

feedback information from the subsequent steps. From another

point of view, steps 1-5 can be alternatively regarded as a

forward process of a DNN. Thanks to end-to-end training, the

reconstruction error between estimated HSIs and ground-truth

HSIs can be backpropagated to guide the network learning.

To this end, we construct a deep neural network based on the

denoising procedure in Algorithm 1 as will be presented in

the next subsection.

C. MAC-Net

Based on the denoising procedure in Algorithm 1, we

construct a model aided nonlocal convolutional neural network

(MAC-Net). Fig. 1 illustrates our MAC-Net. MAC-Net is an

end-to-end network composed of three parts, i.e., spectral

low-rank module, spatial deep prior module (SDPM), and

reconstruction module. Guided by the spectral low-rank prior,

the spectral low-rankness module is related to steps 1-3 in

Algorithm 1 and aims to model the strong correlations among

bands. SDPM takes advantage of nonlocal 3D residual U-

Net to exploit the spatial denoising prior of HSIs and can be

Algorithm 1 Our denoising procedure

Input: Noisy hyperspectral image Y.

Output: Recovered clean hyperspectral image X.

1: Estimate noise correlation matrix Σ with Hysime.

2: Convert non-i.i.d noise to i.i.d noise with Y′ = Σ− 1

2Y.

3: Estimate the subspace number K and preform trucated

SVD of Y′, i.e., Y
′

K = UKΣKVT

K and set D̂ = UK .

4: Denoise the projected image with a deep neural network

to produce Ŵ, i.e., Ŵ = f(D̂TY′).
5: Output the estimated clean hyperspectral image by X̂ =

Σ
1

2 D̂Ŵ.

connected with step 4. According to step 5, the reconstruction

module maps the denoised projected image into the original

spectral space to yield denoised HSIs.

Generally speaking, our MAC-Net is a hybrid model-based

and DL-based method. On one hand, our network is induced

from the model in Eq. (4), making it convey more interpretabil-

ity and provable performance guarantees. For example, all

the modules can be connected with the optimization steps in

Algorithm 1. On the other hand, our MAC-Net also supports

discriminatively learning the spatial priors from data via deep

learning techniques, overcoming the limitation of predefined

hand-crafted priors. Moreover, the forward process of our

MAC-Net can be alternatively interpreted as minimizing the

following objective function

min
D,Θ

1

2
‖Σ− 1

2Y −Df(·)‖2F (11)

where Θ is the parameter set of f(·). Σ− 1

2 transforms the

observed HSI Y into a new spectral space so that the noise

follows Gaussian i.i.d distribution and D encapsulates the

spectral low-rank structure of HSIs. Fed with DTΣ
−1

2 Y, f(·)
tries to generate an image that matches the underlying clean

HSI in the latent spectral subspace.

As we know, without the regularization term of f(·), the

solution of W is DTΣ− 1

2Y based on the spectral low-rank

model in Eq. (3). From this point of view, the spectral low-

rank model can be explained as a partially known model.

SDPM module performs denoising on the projected image

DTΣ− 1

2Y and serves as a complementary to the model.

Thanks to the advantages of learning complex mappings from

data, the representation ability of the model are strengthened,

facilitating improving the denoising capability in complex

environments. As a reward from the physical model, the joint

working with the spectral low-rank model also helps our

network less depend on massive amounts of training data and

increase the interpretability.

Both spectral low-rankness and reconstruction modules can

be considered as a sequence of 1 × 1 convolutions along the

spectral dimension. In the following, we introduce the detailed

structure of our SDPM. We adopt the U-Net architecture [55]

to implement SDPM considering its multi-scale representation

ability and noticeable effectiveness in image denoising [56].

As presented in Table I, SDPM consists of one feature

1“BN”, “UpConv3D” and “NAB” represent batch normalization, upsam-
pleconv3d and efficient nonlocal attention block, respectively.
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TABLE I
NETWORK CONFIGURATION OF OUR SPATIAL DEEP PRIOR MODULE 1

Layer Configuration Stride Output size

Extractor BN+Conv3D+ReLu 1, 1, 1 C × H × W × K

Encoder

BN+Conv3D+ReLu 1, 1, 1 C × H × W × K

BN+Conv3D+ReLu 2, 2, 1 2C × H

2
× W

2
× K

BN+Conv3D+ReLu 1, 1, 1 2C × H

2
× W

2
× K

BN+Conv3D+ReLu 2, 2, 1 4C × H

4
× W

4
× K

BN+Conv3D+ReLu 1, 1, 1 4C × H

4
× W

4
× K

Decoder

BN+DeConv3D+ReLu 1, 1, 1 4C × H

4
× W

4
× K

BN+UpConv3D+ReLu 1

2
, 1

2
, 1 2C × H

2
× W

2
× K

BN+DeConv3D+ReLu 1, 1, 1 2C × H

2
× W

2
× K

BN+UpConv3D+ReLu 1

2
, 1

2
, 1 C × H × W × K

BN+DeConv3D+ReLu+NAB 1, 1, 1 C × H × W × K

Reconstruction BN+DeConv3D+ReLu+NAB 1, 1, 1 C × H × W × K

extraction layer, five pairs of encoder-decoder layers, and one

reconstruction layer.

The feature extraction layer aims to extract shallow features

from input projected HSI with 3D convolutions. Although

orthogonal projection tends to uncorrelate the HSI in the

subspace, this does not mean that there are no dependencies

between channels projected HSI [13]. The main reason is that

orthogonal projections are global for all the pixels while chan-

nel correlations are distributed in local cubes. Therefore, we

employ 3D convolutions to simultaneously capture the local

spatial and channel statistical dependency among DTY′. In

addition, it is known that different HSIs may reside in different

spectral subspaces with varied dimensions. 3D convolution

allows our network to adaptively process the projected HSIs

with arbitrary channels as it is independent of the channel

number of input images. By cascading multiple down-scale

blocks, the encoder gradually decreases the spatial resolution

in half and doubles the feature dimension, yielding multi-

scale spatial representation. Each down-scale block has a

configuration of two 3× 3 × 3 3D convolutions whose stride

are respectively set as 2 and 1.

The decoder recovers the resolution of the feature maps

through a sequence of up-scale and deconvolutional blocks.

Each up-scale block doubles the spatial resolution of the

feature map and reduces the number of channels by half.

Moreover, a residual connection is established between the

encoder and decoder with the same resolution to propagate

the features in shallow layers to deeper layers, facilitating

preserving information and avoiding gradient vanishing dur-

ing training. The reconstruction layer employs the residual

connection and 3D deconvolution to recover underlying clean

projected HSIs. Additionally, as in [57], batch normalization

and ReLu activation are also adopted in all the layers.

3D convolutions can capture the local correlation. Apart

from local correlation, many patches at different locations or

scales in the images also have many similar patterns, i.e.,

nonlocal similarity. Nonlocal similarity can simultaneously

capture the local and long-range spatial similarity of HSIs so

that local and nonlocal patches can be jointly denoised. For this

reason, considering the nonlocal similarity property of HSIs
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Fig. 3. Illustration of the nonlocal attention block. The nonlocal attention
can effectively capture the long-range dependencies among pixels and has
dramatically less computational complexity than commonly used nonlocal
block in [26].

always improves HSI denoising performance. For example,

He et. al [23] grouped similar patches along the spatial

dimension and employed the low-rank matrix approximation to

exploit the non-local similarity of HSIs. Similarly, Zhuang et.

al [24] took advantage of joint sparse representation to capture

the non-local similarity. All these methods have achieved

the state-of-the-art denoising performance. To this end, an

efficient nonlocal attention block is set in the last layer

of the encoder and the reconstruction layer to explore the

long-range dependencies between different locations. Based

on dot-product attention, nonlocal block [26] is a typical

choice for computer vision tasks. Given an input feature map

F ∈ R
c×h×w×k, nonlocal block requires the calculation of the

pairwise similarities between pixels before yielding per-pixel

attention maps and occupies O(n2) memory and O(dkn
2)

computation where n = chw and dk is the dimensionality

of the keys. This threatens challenges for memory and com-

putational load, especially for images with large size.

Instead, we adopt an efficient nonlocal attention block

(NAB) [58] to capture nonlocal dependencies among HSIs.

NAB first forms the global contexts by aggregating the value

matrix with the key matrix, which is then multiplied with the

key matrix to yield the attention map. Specifically, as shown

in Fig. 3, the input feature maps F ∈ R
c×w×h×d are firstly

filtered by three 1 × 1 × 1 3D convolutions and reshaped

into matrix form to produce the query (Q ∈ R
chw×dk), key

(K ∈ R
chw×dk) and value (V ∈ R

chw×vk) matrices. After that

the query matrix and key matrix are normalized by a softmax

function, resulting in scaled key and query matrix, i.e., ρ(Q)
and ρ(K). The attention is then yielded by

Att(Q,K,V) = ρ(Q)(ρ(K)TV) (12)

We further apply a 1×1×1 3D convolution on Att(Q,K,V)
to restore the dimensionality to d and add with input F to

form a residual structure, i.e.,

O = F + cov3d(Att(Q,K,V)) (13)

Unlike the nonlocal block, NAB has substantial efficiency as it

greatly reduces the computational complexity to O(d2n) and

memory load to O(dn+ d2). This makes it highly applicable

for high-resolution images and yields very comparable per-

formance even higher performance in many computer vision

tasks [58]. Therefore, we set the NAB in the last encoding

layer and the reconstruction layer whose feature maps have
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the highest spatial resolution. As observed in [58], dk and dk
has little impact on performance within a reasonable range.

For simplicity, we set their values as dk = dv = ⌈d⌉
2

.

D. Network Implementation

Loss function: Given a training set of noisy-clean HSI

pairs, the training loss of our MAC-Net is defined as the

Euclidean distance between the predicted HSI and ground

truth, formulated as

L = ‖MAC-Net(Y,Θ)−X‖2F (14)

where Θ is the parameter set of MAC-Net and X is the

ground truth HSI. Considering different HSIs have distinct

spectral subspace and noise correlation, we directly use Σ

and D to assign the parameters of spectral low-rankness and

reconstruction layers, leaving only SDPM to be learned. With

such a setting, our network can simultaneously employ the

internal data, i.e., the noisy HSI for adaptive learning of Σ

and D and external data, i.e., training set, to better capture

the structure of individual HSIs. As a result, the denoising

flexibility and capability of our network are enhanced.

Training details: We implemented our MAC-Net on the

PyTorch platform and used two NVIDIA GeForce RTX 3090

GPUs to train the network through the ADAM algorithm. We

set the number of epochs as 300. The initial learning rate

was assigned as 5 × 10−3 and then reduced by a factor of

0.35 in every 80 epochs. nonlocal means was performed on

transformed Y, i.e., Σ− 1

2Y to better estimate the subspace.

IV. EXPERIMENTS

In this section, we comprehensively evaluate the denoising

ability of the proposed MAC-Net on both synthetic data and

real-world data. Moreover, throughout analysis and ablation

study are also presented to show the generalization and learn-

ing capacity of our method.

A. Experiment Settings

Training dataset: Following the experimental setting

in [46], the training set contains 100 HSIs selected from ICVL

hyperspectral dataset 2. Each image is size of 1392×1300×31.

We carried out random flipping, cropping, and resizing to en-

rich the training set. After that, subimages size of 64×64×31
are used to train the network.

Testing dataset: The testing dataset includes two parts, i.e.,

synthetic data and real-world data. The synthetic data contains

50 close-range HSIs selected from ICVL hyperspectral dataset

and remote sensing Washington DC Mall HSI. The real-world

data are remote sensing HSIs including HYDICE Urban HSI

and AVIRIS Indian Pines HSI.

Compared methods: Twelve methods are selected as alter-

native methods to be compared with our method, including

8 model-based methods, i.e., BM4D [29], TDL [40], MT-

SNMF [9], LLRT [30], NGMeet [23], LRMR [59], LRT-

DTV [44] and FastHyDe [24] and 4 DL-based methods,

i.e., DnCNN [57], HSI-SDeCNN [47], HSID-CNN [47],

2Link:http://icvl.cs.bgu.ac.il/hyperspectral/

QRNN3D [46]. DnCNN is performed in a band by band

manner. We tried our best to manually tune the parameters

of model-based methods to the optimal.

Evaluation indexes: We use peak signal-to-noise ratio

(PSNR), structure similarity (SSIM), and spectral angle map-

per (SAM) to quantitatively assess the denoising ability of

all the methods. PSNR and SSIM respectively measure the

quality of reconstruction of lossy compression and perceived

changes in structural information. SAM depicts the spectral

differences between clean and denoised HSIs. Smaller SAM

and larger PSNR and SSIM imply better denoising. Moreover,

we compare the restored HSI with clean HSI and noisy HSI

to illustrate their differences for qualitative assessment.

Noise generation: As mentioned earlier, there exists spec-

trally non-i.i.d noise. To this end, different distributions of

zero-mean Gaussian noise were added to each band to produce

the noisy HSIs. The noise variances σ are randomly selected in

three ranges, i.e., [0-15], [0-55], [0-95]. For these three cases,

the exact variance is given for methods that require σ as an

input, for example, DnCNN and BM4D. Moreover, we also

design a blind case in which the noise variances are unknown

but estimated by [60] under the observation of its superior

accuracy and stability in noise level estimation.

B. Evaluation on ICVL HSIs

1) Quantitative Evaluation: Table II presents the denoising

performance of all the competing methods regarding PSNR,

SSIM and SAM indexes on 50 testing HSIs of the ICVL

dataset with each size of 512 × 512 × 31. The top two

results are respectively highlighted with bold red and bold

blue. In general, those methods that consider the spectrally

non-i.i.d noises into consideration yield significantly better

denoising, for example, BM4D, MTSNMF, LRMR, LRTDTV,

FastHyDe, and QRNN3D, especially in the case of obvious

noise differences among bands, i.e., σ ∈ [0 − 55], [0 − 95].
Among model-based methods, FastHyDe can better handle

noise as it simultaneously considers the global spectral low-

rankness and takes more advantage of the spatial sparsity

with the state-of-the-art BM3D denoiser. In comparison to

HSI-SDeCNN and HSID-CNN, QRNN3D is more capable of

handling noises thanks to better depicting local spectral-spatial

structure with 3D convolution and global correlation along the

spectrum with quasi-recurrent pooling function. The ignorance

of spectral correlation and spectral-spatial structure leads to

poor denoising performance of band-wise Dn-CNN. Compared

with the best model-based method, FastHyDe, the embedded

spatial nonlocal convolutional subnetwork, i.e., SDPM, has

more capacity of capturing the spatial structure of HSIs

than hand-crafted priors thanks to data-driven training. Unlike

“black-box” QRNN3D, the integration of the spectral low-rank

model enhances the interpretability and generalization ability

of MAC-Net and also reduces the number of parameters to be

learned. Moreover, the nonlocal attention block is also help-

ful to capture the long-range dependencies among different

contents of the HSI. For the above reasons, MAC-Net can

better filter out the noises and obtain the highest denoising

effectiveness for all the indexes and cases.
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TABLE II
COMPARISON OF DIFFERENT METHODS ON 50 TESTING HSIS FROM ICVL DATASET. THE TOP TWO VALUES ARE MARKED RED AND BLUE.

Sparse methods Low-rank methods DL methods

σ Index
Noisy BM4D TDL MTSNMF LLRT NGMeet LRMR LRTDTV FastHyDe Dn-CNN HSI-SDe HSID- QRNN3D MAC-Net

[29] [40] [9] [30] [23] [59] [44] [24] [57] CNN [47] CNN [21] [46] (Ours)

[0-15]

PSNR 33.47 45.12 38.84 45.62 46.17 39.42 41.49 42.17 47.85 41.92 41.06 38.08 43.36 49.19

SSIM 0.6295 0.9753 0.8481 0.9562 0.9649 0.8647 0.9630 0.9717 0.9941 0.9596 0.9565 0.9669 0.9884 0.9980

SAM 0.1622 0.0254 0.0829 0.0409 0.0319 0.0891 0.0268 0.0229 0.0163 0.0274 0.0329 0.0511 0.0336 0.0127

[0-55]

PSNR 21.67 38.21 29.45 37.57 37.19 30.48 34.34 39.69 41.74 37.90 35.66 32.55 40.15 43.02

SSIM 0.2361 0.9217 0.5238 0.8569 0.8389 0.6748 0.8005 0.9625 0.9845 0.9293 0.8736 0.8421 0.9729 0.9925

SAM 0.5014 0.0552 0.2409 0.1372 0.1020 0.2830 0.0408 0.0335 0.0344 0.0504 0.0602 0.0918 0.0382 0.0280

[0-95]

PSNR 16.97 35.27 25.40 34.20 32.49 27.20 30.71 38.12 39.31 34.65 32.45 29.12 37.66 40.17

SSIM 0.1442 0.8764 0.3735 0.7998 0.7191 0.5506 0.6302 0.9539 0.9773 0.8442 0.7875 0.7049 0.9479 0.9837

SAM 0.7199 0.0799 0.3641 0.2128 0.1687 0.4275 0.0589 0.0402 0.0447 0.1094 0.0876 0.1316 0.0468 0.0377

Blind

PSNR 19.99 37.00 27.71 36.25 34.42 28.89 33.14 39.14 40.95 36.82 34.20 31.31 39.32 41.62

SSIM 0.2054 0.8970 0.4614 0.8340 0.7518 0.6074 0.7445 0.9598 0.9820 0.9094 0.8284 0.7804 0.9877 0.9884

SAM 0.5829 0.0662 0.2953 0.1649 0.1467 0.3481 0.0489 0.0365 0.0393 0.0648 0.0723 0.1020 0.0409 0.0358

(a) Clean (b) Noisy (c) BM4D [29] (d) TDL [40] (e) MTSNMF [9] (f) LLRT [30] (g) NGMeet [23] (h) LRMR [59]

(i) LRTDTV [44] (j) FastHyDe [24] (k) DnCNN [57] (l) HSI-SDeCNN [47] (m) HSID-CNN [21] (n) QRNN3D [46] (o) MAC-Net

Fig. 4. Denoising results on the gavyam 0823-0933 image with the noise variance in [0-95]. The false-color images were generated by combining bands 5,
18, 25. MAC-Net achieves the best visual results with less artifacts.
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(o) MAC-Net

Fig. 5. Denoising results of pixel (451, 135) in gavyam 0823-0933 HSI.

2) Qualitative Evaluation: In order to more comprehen-

sively demonstrate the denoising effectiveness of all the meth-

ods, we further show a visual comparison on the false-color

images generated by combining bands 5, 18, and 25 before

and after denoising in Fig. 4. As a visual comparison shown

in Fig. 4 (a) and Fig. 4 (b), heavy noise makes it very

difficult to tell the content of the image, threatening a great

challenge for a denoiser. Except for LRTDTV and FastHyDe,

other model-based methods provide lower denoising quality,

either failing to reduce all the noises, see, Fig. 4 (d)-(h), or

removing noise at the sacrifice of important details, see Fig. 4

(c). As 3D data, the hyperspectral image has characteristics

of the spectral-spatial structure, global spectral correlation,

and local/nonlocal spatial interactions, and more. This prior

information is very conducive to robust denoising and thereby

enhances QRNN3D, LRTDTV, FastHyDe, and QRNN3D with

more promising denoising performance. Band-wise DnCNN

introduces noticeable artifacts because of the ignorance of

spectral-spatial correlations of HSI. Unlike QRNN3D which

integrates the prior information of HSIs in a “black-box”
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TABLE III
COMPARISON OF DIFFERENT METHODS ON WASHINGTON DC MALL. THE TOP TWO VALUES ARE MARKED RED AND BLUE.

Sparse methods Low-rank methods DL methods

σ Index
Noisy BM4D TDL MTSNMF LLRT NGMeet LRMR LRTDTV FastHyDe Dn-CNN HSI-SDe HSID- QRNN3D MAC-Net

[29] [40] [9] [30] [23] [59] [44] [24] [57] CNN [47] CNN [21] [46] (Ours)

[0-15]

PSNR 32.38 43.89 35.31 48.39 33.57 47.83 44.80 46.73 56.40 39.83 44.30 41.85 36.92 57.43

SSIM 0.6507 0.9621 0.7796 0.9878 0.7043 0.9681 0.9684 0.9792 0.9980 0.9034 0.9689 0.9479 0.8545 0.9983

SAM 0.2978 0.0741 0.2003 0.0415 0.2536 0.0833 0.0609 0.0472 0.0199 0.1022 0.0684 0.0795 0.1327 0.0167

[0-55]

PSNR 22.52 37.18 27.88 42.40 23.43 40.73 36.98 42.39 48.48 35.04 38.34 36.93 35.86 50.59

SSIM 0.3054 0.8554 0.4991 0.9478 0.3495 0.8920 0.8518 0.9384 0.9875 0.7582 0.8944 0.8769 0.8381 0.9908

SAM 0.7883 0.1459 0.4679 0.0802 0.6870 0.2439 0.1514 0.0981 0.0460 0.1762 0.1268 0.1361 0.1475 0.0382

[0-95]

PSNR 16.80 34.51 24.29 38.68 18.08 37.03 32.69 40.14 46.70 32.37 35.34 32.11 33.85 45.52

SSIM 0.1642 0.7717 0.3542 0.8790 0.1783 0.8278 0.7166 0.9026 0.9807 0.6632 0.8293 0.7344 0.7681 0.9746

SAM 1.054 0.1719 0.6086 0.1219 0.9260 0.3802 0.2303 0.1174 0.0494 0.2399 0.1676 0.2319 0.1726 0.0676

Blind

PSNR 21.90 37.22 27.79 42.21 23.07 40.40 36.73 41.93 48.13 34.87 38.02 36.82 35.77 49.40

SSIM 0.2891 0.8544 0.4986 0.9460 0.3360 0.8866 0.8416 0.9332 0.9875 0.7549 0.8900 0.8731 0.8362 0.9883

SAM 0.8075 0.1496 0.4527 0.0801 0.7069 0.2441 0.1537 0.0917 0.0430 0.1801 0.1282 0.1278 0.1478 0.0427

TABLE IV
COMPUTATIONAL TIME (SECONDS) OF DIFFERENT DENOISING ALOGORITHMS ON WASHINGTON DC MALL HSI.

Sparse methods Low-rank methods DL methods

Method BM4D TDL MTSNMF LLRT NGMeet LRMR LRTDTV FastHyDe Dn-CNN HSI-SDeCNN HSID-CNN QRNN3D MAC-Net

Time 528.1 45.76 122.7 2059 131.5 113.5 1146 24.71 217.7 113.3 115.1 104.9 8.613

manner, MAC-Net is a spectral low-rank model aided network

and is more interpretable. The combination of spectral low-

rank model for and data-driven learning of spatial structures

augments the denoising capacity of MAC-Net. For this rea-

son, MAC-Net surpasses QRNN3D with better visual quality,

as can be seen in the enlarged areas where the denoised

HSI produced by QRNN3D contains noisy artifacts. Overall,

FastHyDe and MAC-Net are visually closer to the clean one

than other methods.

Fig. 5 depicts the spectral reflectance of pixel (451, 135)

before and after noise reduction. In consistence with the

phenomenon shown in Fig. 4, our MAC-Net provides the

best visual quality by best matching with the ground-truth

spectrum. To summarize, the abovementioned observations

confirm the powerful denoising ability of the proposed MAC-

Net and also the benefits of combining physical models with

deep learning techniques for noise reduction over both model-

based and DL-based methods.

C. Evaluation on Remote Sensing HSIs

Besides experiments with close-range HSIs, i.e., ICVL

HSIs, we also ran all the competing methods on remote

sensing HSI, i.e., Washington DC Mall HSI (WDCM HSI).

WDCM HSI originally contains 1208× 307 pixels and covers

191 spectral bands, and was acquired by the hyperspectral

digital imagery collection experiment (HYDICE) sensor. We

cropped a subimage with 256×256×191 sizes to conduct the

experiments. Compared with ICVL HSIs, WDCM HSI has a

higher spectral resolution but much lower spatial resolution.

Because of the comparatively smaller number of remote sens-

ing HSIs available for fine-tuning, we directly use the model

trained on the ICVL dataset to test all the DL-based methods

so as to show the generalization ability of all the methods.

Table III compares the PSNR, SSIM, SAM of all the

methods in different cases. Except for σ ∈ [0 − 95], our

MAC-Net achieves the best denoising performance. Even

σ ∈ [0 − 95], MAC-Net still ranks the second among all the

methods. MAC-Net learns a universal network for all the HSIs

and fails to consider the uniqueness of an individual HSI.

This is particularly important for HSI denoising in the case

of high noise and very large range of noise. Moreover, there

is a huge gap between remote sensing HSIs and close-range

HSIs in terms of spectral and spatial resolution. Differently,

FastHyDe is a model-based method which does not depend on

the training set and can adaptively capture the characteristic

of the observed HSI. For this reason, MAC-Net is inferior to

FastHyDe when σ ∈ [0− 95].

Fig. 6 and 7 respectively depicts the band images and

spectrum before and after denoising. FastHyDe and MAC-

Net obviously outperform alternative denoisers by remov-

ing most noises with preserved dominant details. MAC-Net

and FastHyDe show very similar visual results. Overall, this

experiment further shows the strong denoising ability and

generalization ability of MAC-Net over purely data-driven DL-

based methods.

We further record the running time of all the methods on

Washington DC Mall HSI. All the methods run on a machine

with an Intel(R) Xeon Silver 4214R CPU at 2.40 GHz and

126 GB RAM. The running time is shown in Table IV. It

can be seen that DL-based methods generally require less

running time than traditional model-based methods because

of no e time-consuming numerical iteration. Among DL-based

methods, our MAC-Net spends the least running time as the

subspace projection is very fast and can greatly reduce the size

of image required for convolution operations. To summarize,

this experiment further shows the computational efficiency of

our MAC-Net over alternative methods.
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(a) Clean (b) Noisy (c) BM4D [29] (d) TDL [40] (e) MTSNMF [9] (f) LLRT [30] (g) NGMeet [23] (h) LRMR [59]

(i) LRTDTV [44] (j) FastHyDe [24] (k) DnCNN [57] (l) HSI-SDeCNN [47] (m) HSID-CNN [21] (n) QRNN3D [46] (o) MAC-Net

Fig. 6. Denoising results on the Washington DC Mall HSI with the noise variance in [0-95]. The false-color images were generated by combining bands 17,
94, 184. MAC-Net achieves the best visual results with less artifacts.
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(o) MAC-Net

Fig. 7. Denoising results of pixel (100, 100) in Washington DC Mall HSI.

(a) Noisy (b) BM4D (c) TDL (d) MTSNMF (e) LLRT (f) NGMeet (g) LRMR

(h) LRTDTV (i) FastHyDe (j) DnCNN (k) HSI-SDeCNN (l) HSID-CNN (m) QRNN3D (n) MAC-Net

Fig. 8. Denoising results on real-world Urban dataset. The false-color images were generated by combining bands 1, 108, 208. The proposed MAC-Net
provides the most appealing visual results.

D. Evaluation on Real-world Remote Sensing HSIs

We further carried out experiments on real-world remote

sensing HSIs to thoroughly evaluate the denoising capacity of

all the methods. Since there is no clean counterpart of real-

world remote sensing HSI, we chose to qualitatively compare

the denoising results.

1) HYDICE Urban HSI: HYDICE Urban HSI was col-

lected by the HYDICE sensor and contains 307× 307 pixels

and 210 spectral bands with wavelength covering from 0.4

to 2.5 µm. As can be seen in Fig. 8 (a), the HSI is heavily

corrupted by complex noises, making it very suitable to ex-

amine the denoising ability of all the methods. Among model-

based methods, FastHyDe and LRTDTV achieve better effects

because of the simultaneous integration of the nonlocal/local

spatial structure and global spectral low-rankness. The igno-

rance of the spectral-spatial structure of HSIs leads to serious

details loss in the denoised HSIs produced by band-wise

DnCNN. HSID-CNN and HSI-SDeCNN show inferior denois-
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Fig. 9. Denoising results of pixel (249, 216) in real-world Urban data set.

(a) Noisy (b) BM4D (c) TDL (d) MTSNMF (e) LLRT (f) NGMeet (g) LRMR

(h) LRTDTV (i) FastHyDe (j) DnCNN (k) HSI-SDeCNN (l) HSID-CNN (m) QRNN3D (n) MAC-Net

Fig. 10. Denoising results on real-world Indian Pines dataset. The false-color images were generated by combining bands 3, 108, 210. The proposed MAC-Net
provides the best visual results.
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Fig. 11. Denoising results of pixel (100, 100) in real-world remote sensing Indian Pines dataset.

ing than QRNN3D and MAC-Net as they fail to capture the

global spectral correlation. The hybrid advantages of model-

based and DL-based methods allow MAC-Net to outperform

QRNN3D, LRTDTV, and FastHyDe by removing most noises

while preserving important textures. Fig. 9 depicts the spec-

trum of denoised and noisy HSI at the location of (216, 249).

As the phenomena revealed in Fig. 8, LRTDTV, FastHyDe,

QRNN3D, and MAC-Net provide the most desirable denoising

thanks to higher ability to depict the global spectral correla-

tion and local/nonlocal spatial dependencies. Benefiting from

the embedded spectral low-rank model, MAC-Net can better

preserve the local spectral details than QRNN3D. Overall, this

experiment evidently shows the strong denoising ability and

generalization ability of our MAC-Net to remote sensing HSIs.

2) AVIRIS Indian Pines HSI: The Indian Pines HSI was

imaged by NASA AVIRS sensor and includes 145×145×220
bands with a spatial resolution of 20m per pixel. Fig. 10

illustrates the denoising performance of all the compared

methods as well as the original noisy HSI. Compared with

alternative methods that either produce blur images or fail to

thoroughly remove the noises, LRTDTV, FastHyDe and MAC-

Net achieve dominant denoising effectiveness by recovering

local details, especially edges, as they can better capture

the spectral low-rankness of HSIs. Fig. 11 plots the spectral

reflectance of pixel (100,100). As can be seen, all the methods

provide very similar spectrum in real visual perception.
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E. Ablation Study

Here, we conduct a comprehensive study on our MAC-Net

with respect to the nonlocal block, network depth, and the

number of training samples. All the experiments are conducted

on ICVL training and testing datasets with noise variances in

the range of [0-55].

TABLE V
THE DENOISING PERFORMANCE WITH/WITHOUT NAB.

Index PSNR SSIM SAM

With 43.02 0.9925 0.0280

Without 42.49 0.9912 0.0292

1) Effectiveness of the Nonlocal Attention Block: In this

experiment, we examine the effectiveness of NAB on the

denoising performance. Table V presents the denoising per-

formance with/without NAB. NAB encourages to capture of

the nonlocal dependencies among different contents of the HSI

and thereby improves denoising performance with a gain of

0.53 in terms of PSNR and 0.0013 in terms of SSIM, verifying

its effectiveness.

2) Impact of the Number of Training Samples: The ad-

vantage of model-based methods includes less requirement

of training samples and high generalization ability. In this

experiment, we changed the number of training samples from

20 to 100 with an interval of 20. As shown in Table VI,

on one hand, with the increase of training samples, PSNR

improves from 42.44 to 43.02, SSIM grows from 0.9760 to

0.9925 and SAM drops from 0.0286 to 0.0280, indicating

the denoising performance gradually gets better. On the other

hand, compared with the training with 20 HSIs, the changes

of training samples notice an insignificant gain of 0.58 and

0.0165 with respect to PSNR and SSIM respectively when

5 times of the training samples were used. Even with 20

HSIs, the denoising performance still outperforms alternative

methods for example QRNN3D whose PSNR is 40.15. This

phenomenon means that our MAC-Net doesn’t heavily rely

on training samples as alternative black-box methods such as

QRNN3D, showing the practicality of our method in real-

world HSI denoising where training samples are very rare.

The main reason lies in the hybrid advantages of model-based

methods in generalization ability and learning-based methods

in strong representation capacity.

TABLE VI
THE IMPACT OF THE NUMBER OF TRAINING SAMPLES.

Index 20 40 60 80 100

PSNR 42.44 42.49 42.17 42.67 43.02

SSIM 0.9760 0.9767 0.9708 0.9754 0.9925

SAM 0.0286 0.0288 0.0311 0.0281 0.0280

3) Impact of the Network Depth: Apart from the number of

training samples, we also test how the network depth affects

the denoising performance. Σ, D, Σ−1, DT respectively

occupy fixed layers, only leaving our SDPM impacting the

network depth. As presented in Fig. 12, more layers contribute

to a more powerful representation and thereby higher denois-

ing ability. When the number of layers is more than 12, the

denoising performance tends to be stable. Based on the above

observation, we set the number of layers as 12 to balance the

denoising performance and network parameters.

4) Sensitivity Analysis of K: Accurately estimating the

spectrum subspace dimensionality K is actually a hard

task. Denoting the subspace dimensionality estimated by the

Hysime algorithm as R̂, K varies around R̂ to show the

changes of denoising performance. As can be seen from

Table VII, an overestimated K leads to lower denoising

effectiveness because the spectral low-rankness of HSI cannot

be fully exploited. An underestimation of K also results in

poor denoising and the best denoising performance is obtained

by setting K = R̂. From the experiment, we think that Hysime

is a reasonable tool to estimate K , which is also in line with

many previous works such as LRTV [33] and LRTDTV [44].

TABLE VII
DENOISING PERFORMANCE CHANGES WITH RESPECT TO K .

K R̂-2 R̂-1 R̂ R̂+1 R̂+2

PSNR 42.88 42.88 43.02 42.59 41.85

SSIM 0.9801 0.9801 0.9925 0.9799 0.9925

SAM 0.0284 0.0284 0.0280 0.0294 0.0280

V. CONCLUSION

In this paper, we introduce a model aided nonlocal neu-

ral network (MAC-Net) for hyperspectral image denoising.

The embedded spectral low-rank model encourages MAC-

Net to absorb the generalization capability of model-based

approaches for reasonable depiction of the spectral correlation

among bands. The introduced nonlocal U-Net enables to

inherit the strong representation capability of deep learning-

based approaches for effective exploitation of local and nonlo-

cal multi-scale spatial dependencies. Experiment comparisons

on both close-range and remote sensing HSIs show that our

MAC-Net outperforms both model-based and deep learning-

based methods in terms of both subjective visual effects and

objective quantitative measurements. Additional ablation study

also confirms its strong learning ability, superior generalization

capability, and less requirement of training samples. In our

future work, we will extend the network to cope with mixed

noises by incorporating the noise models.
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